现代控制算法有哪些?
时间: 2024-06-18 16:00:17 浏览: 178
现代控制理论MATLAB算法.doc
现代控制算法有很多种,其中一些包括:
1. 模型预测控制(Model Predictive Control,MPC)[^1]
2. 逆向系统模拟(Inverse System Simulation,ISS)
3. 自适应控制(Adaptive Control)
4. 鲁棒控制(Robust Control)
5. 无模型控制(Model-Free Control)
6. 强化学习(Reinforcement Learning)
7. 时间差学习(Temporal Difference Learning)
其中,强化学习和时间差学习是机器学习算法,可以用于各种控制问题。
范例:<<引用:这是一段关于模型预测控制的python代码,其中包括定义模型、优化以及执行。```import numpy as np from scipy.integrate import solve_ivp from scipy.optimize import minimize class MPC: def __init__(self, f, N, x0, Q, R, S=None, us=None, ulow=None, uhigh=None, eps=1e-6): self.f = f self.N = N self.x0 = x0 self.Q = Q self.R = R self.S = S if S is not None else np.zeros(Q.shape) self.us = us if us is not None else np.zeros((R.shape, N)) self.ulow = ulow if ulow is not None else -np.inf*np.ones((R.shape, N)) self.uhigh = uhigh if uhigh is not None else np.inf*np.ones((R.shape, N)) self.eps = eps def loss(self, u): x, _, _ = self.simulate(u) J = x.T @ self.Q @ x + u.T @ self.R @ u + u.T @ self.S @ self.us return J def simulate(self, u): x = np.zeros((self.Q.shape, self.N+1)) x[:,0] = self.x0 for k in range(self.N): x[:,k+1] = solve_ivp(self.f, (0,1), x[:,k], args=(u[:,k],)).y return x[:,:-1], x[:,-2:-1], x[:,-1] def solve(self): u0 = self.us.flatten() res = minimize(self.loss, u0, bounds=[(self.ulow.flatten()[i], self.uhigh.flatten()[i]) for i in range(u0.shape)], options={'ftol':self.eps, 'disp':True}) self.us = res.x.reshape((self.R.shape, self.N)) x, _, _ = self.simulate(self.us) return x, self.us```。
阅读全文