yolov8识别过程详解
时间: 2023-10-03 17:07:57 浏览: 386
基于yolov8车牌识别算法,支持12种中文车牌类型
5星 · 资源好评率100%
YOLOv8是一种用于目标检测和图像分割的模型。识别过程分为三个步骤:检测、分类和分割。
首先,使用YOLOv8模型进行目标检测。模型会将输入图像划分为不同的网格,并为每个网格预测出一组边界框及其置信度。通过设置阈值,可以筛选出具有较高置信度的目标框。
接下来,对于每个检测到的目标框,使用分类模型对其进行分类。使用yolov8n-cls.yaml配置文件加载分类模型,该模型已在COCO数据集上进行了预训练。分类模型会对每个目标框进行类别预测,输出目标所属的类别。
最后,对于需要进行图像分割的目标框,使用分割模型进行像素级的分割。使用yolov8n-seg.yaml配置文件加载分割模型,该模型也是在COCO数据集上进行了预训练。分割模型将目标框内的像素进行分割,并输出对应的分割掩码,以标识目标在图像中的位置。
通过以上三个步骤,YOLOv8模型可以实现对目标的检测、分类和分割,从而全面理解输入图像中的目标信息。
阅读全文