yolov5 export参数dynamic

时间: 2023-07-30 17:12:32 浏览: 69
Yolov5在导出模型时,可以使用`--dynamic`参数来指定是否生成动态形状的模型。这个参数主要用于处理输入大小的变化。当设置为True时,导出的模型将支持在不同尺寸的输入图像上进行推理。而当设置为False时,导出的模型将只能在固定尺寸的输入图像上进行推理。使用动态形状的模型可以提供更大的灵活性,但需要更多的计算资源。
相关问题

yolov5导出模型

要将yolov5模型导出为ONNX格式,可以按照以下步骤进行操作: 1. 下载yolov5-6.0代码,可以从GitHub上获取:https://github.com/ultralytics/yolov5/tree/v6.0 \[2\] 2. 打开终端,进入yolov5-6.0目录。 3. 执行命令`python export.py --weights=../yolov5s.pt --dynamic --include=onnx --opset=11`,这将导出yolov5s-raw.onnx文件 \[2\]。 4. 导出的ONNX模型可以在后续的应用中使用。 请注意,导出模型时可以根据需要进行参数的修改,例如指定动态维度为batch,去掉width和height的指定。此外,还可以对yolo.py进行修改,以简化后处理,并将anchor合并到ONNX模型中。预处理部分可以使用warpaffine对图像进行平移和缩放。\[3\] 希望这些信息对您有所帮助! #### 引用[.reference_title] - *1* [YOLOv5模型导出](https://blog.csdn.net/u011922698/article/details/123289954)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^control_2,239^v3^insert_chatgpt"}} ] [.reference_item] - *2* *3* [tensorrt高级2:YoloV5 模型导出、编译到推理(源码讲解)](https://blog.csdn.net/weixin_38346042/article/details/126905120)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^control_2,239^v3^insert_chatgpt"}} ] [.reference_item] [ .reference_list ]

yolov5 .pt 转onnx

### 回答1: YOLOv5是一种常用的物体检测算法,而ONNX是一种用于机器学习模型的开放式格式。将YOLOv5之前的.pt模型转换为ONNX格式模型有很多好处,例如可以将模型部署到不同平台、实现模型量化和优化等。 想要将.pt模型转换为ONNX格式,需要使用pytorch的torch.onnx模块。首先,需要加载模型和相应的参数。 import torch model = torch.load('yolov5.pt', map_location='cpu')['model'].float() # 加载模型 然后,需要输入一个随机的数据张量,保存模型输出。 dummy_input = torch.randn(1, 3, 640, 640).float() # 输入数据张量 torch.onnx.export(model, dummy_input, "yolov5.onnx", verbose=False, opset_version=11) # 保存模型 最后一行代码将模型导出成ONNX格式,参数中的verbose表示是否显示模型信息,opset_version表示使用的模型版本。可以根据需要对这些参数进行修改。 总之,将YOLOv5的.pt模型转换成ONNX格式,可以使得模型更加灵活地应用到不同的平台和资源中。 ### 回答2: YOLOv5是一种用于图像检测和目标识别的深度学习模型,它使用了神经网络架构,可以快速准确地检测出图像中的多个物体,是广泛应用于计算机视觉领域的一种先进技术。在训练得到YOLOv5 的权重文件(.pt)后,需要将其转换为ONNX格式,以便在不同的平台和环境中使用。 要将YOLOv5的.pt文件转换为ONNX格式,可以使用ONNX导出器,这是一个开源工具包,具有简单易用的API接口和丰富的功能,需要具备Python语言和PyTorch库支持。首先,需要安装ONNX导出器和PyTorch库,然后导入YOLOv5的权重文件,创建模型和图形,设置输入和输出格式,并运行转换代码。在转换完成后,生成的ONNX文件可以直接用于推理或部署到其他环境中。 需要注意的是,转换过程中可能会出现一些问题,比如不支持的层类型、维度不匹配、精度损失等,需要对转换结果进行测试和优化。同时,如果需要从其他框架或模型转换成ONNX格式,也需要进行类似的操作,不同模型和框架之间的差异性可能会对结果产生影响。因此,在进行转换时,需要仔细阅读文档和API接口,了解实际情况,并根据需求进行调整和优化,以获得更好的性能和效果。 ### 回答3: YOLOv5是一种用于实时目标检测的神经网络模型,而.onnx是一种可移植的机器学习模型格式。将YOLOv5的.pt模型转换为.onnx格式,可以使该模型能够在不同平台上运行,并具有更好的跨平台兼容性和可移植性。下面是将YOLOv5 .pt模型转换为.onnx格式的步骤: 1. 安装ONNX和pytorch 转换模型需要安装ONNX和pytorch。您可以使用下面的命令在conda环境中安装: ```python conda install -c conda-forge onnx conda install pytorch torchvision -c pytorch ``` 2. 执行转换脚本 在安装好ONNX和pytorch之后,您需要下载yolov5的转换脚本,然后执行以下命令: ```python python models/export.py --weights /path/to/pt/file.pt --img 640 --batch 1 --names /path/to/your/classes.txt --dynamic ``` 在该命令中,您需要将”/path/to/pt/file.pt”替换为您下载的yolov5 .pt模型的路径,将“/path/to/your/classes.txt”替换为你自己的类别文件。默认情况下,YOLOv5的输入图像大小为640x640,并且批量大小为1。如果您想定制这些值,请使用“--img”和“--batch”选项,例如: ```python python models/export.py --weights /path/to/pt/file.pt --img 416 --batch 4 --names /path/to/your/classes.txt --dynamic ``` 3. 检查输出文件 脚本将生成一个可转换为.onnx格式的中间格式文件,“/path/to/pt/file.onnx”。检查该文件,确保没有出现错误。如果没有问题,您可以继续将该文件转换为.onnx格式,如下所示: ```python import torch model = torch.onnx.export(model, x, onnx_file, opset_version=11, input_names=['images'], output_names=['output']) ``` 4. 验证转换结果 最后,验证转换结果是否与原始.pt模型相同。您可以使用以下代码来比较两个模型的输出: ```python import onnxruntime as rt ort_sess = rt.InferenceSession(onnx_file) # Load an image image = cv2.imread("my_image.jpg") image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) image = cv2.resize(image, (416, 416)) # Preprocess the image image = image.astype(np.float32) image /= 255.0 # Run inference on the onnx model ort_inputs = {input_name: np.expand_dims(image, axis=0)} ort_outs = ort_sess.run(None, ort_inputs) # Compare outputs to Pytorch with torch.no_grad(): pytorch_inputs = { "image": torch.from_numpy(np.expand_dims(image, axis=0)).to(device), } pytorch_out = torch_model(**pytorch_inputs) assert np.allclose(ort_outs[0], pytorch_out.cpu().numpy(), atol=1e-2) ``` 如果两个输出之间具有相同的值,则意味着您已成功地将YOLOv5 .pt模型转换为ONNX格式。

相关推荐

class Detect(nn.Module): stride = None # strides computed during build onnx_dynamic = False # ONNX export parameter def init(self, nc=80, anchors=(), ch=(), inplace=True): # detection layer super().init() self.nc = nc # number of classes self.no = nc + 5 # number of outputs per anchor self.nl = len(anchors) # number of detection layers self.na = len(anchors[0]) // 2 # number of anchors self.grid = [torch.zeros(1)] * self.nl # init grid a = torch.tensor(anchors).float().view(self.nl, -1, 2) self.register_buffer('anchors', a) # shape(nl,na,2) self.register_buffer('anchor_grid', a.clone().view(self.nl, 1, -1, 1, 1, 2)) # shape(nl,1,na,1,1,2) self.m = nn.ModuleList(nn.Conv2d(x, self.no * self.na, 1) for x in ch) # output conv self.inplace = inplace # use in-place ops (e.g. slice assignment) def forward(self, x): z = [] # inference output for i in range(self.nl): x[i] = self.mi # conv bs, _, ny, nx = x[i].shape # x(bs,255,20,20) to x(bs,3,20,20,85) x[i] = x[i].view(bs, self.na, self.no, ny, nx).permute(0, 1, 3, 4, 2).contiguous() if not self.training: # inference if self.grid[i].shape[2:4] != x[i].shape[2:4] or self.onnx_dynamic: self.grid[i] = self._make_grid(nx, ny).to(x[i].device) y = x[i].sigmoid() if self.inplace: y[..., 0:2] = (y[..., 0:2] * 2. - 0.5 + self.grid[i]) * self.stride[i] # xy y[..., 2:4] = (y[..., 2:4] * 2) ** 2 * self.anchor_grid[i] # wh else: # for YOLOv5 on AWS Inferentia https://github.com/ultralytics/yolov5/pull/2953 xy = (y[..., 0:2] * 2. - 0.5 + self.grid[i]) * self.stride[i] # xy wh = (y[..., 2:4] * 2) ** 2 * self.anchor_grid[i].view(1, self.na, 1, 1, 2) # wh y = torch.cat((xy, wh, y[..., 4:]), -1) z.append(y.view(bs, -1, self.no)) return x if self.training else (torch.cat(z, 1), x) @staticmethod def _make_grid(nx=20, ny=20): yv, xv = torch.meshgrid([torch.arange(ny), torch.arange(nx)]) return torch.stack((xv, yv), 2).view((1, 1, ny, nx, 2)).float() 基于YOLOv5详细介绍这个程序

class Detect(nn.Module): stride = None # strides computed during build onnx_dynamic = False # ONNX export parameter def __init__(self, nc=80, anchors=(), ch=(), inplace=True): # detection layer super().__init__() self.nc = nc # number of classes self.no = nc + 5 # number of outputs per anchor self.nl = len(anchors) # number of detection layers self.na = len(anchors[0]) // 2 # number of anchors self.grid = [torch.zeros(1)] * self.nl # init grid a = torch.tensor(anchors).float().view(self.nl, -1, 2) self.register_buffer('anchors', a) # shape(nl,na,2) self.register_buffer('anchor_grid', a.clone().view(self.nl, 1, -1, 1, 1, 2)) # shape(nl,1,na,1,1,2) self.m = nn.ModuleList(nn.Conv2d(x, self.no * self.na, 1) for x in ch) # output conv self.inplace = inplace # use in-place ops (e.g. slice assignment) def forward(self, x): z = [] # inference output for i in range(self.nl): x[i] = self.m[i](x[i]) # conv bs, _, ny, nx = x[i].shape # x(bs,255,20,20) to x(bs,3,20,20,85) x[i] = x[i].view(bs, self.na, self.no, ny, nx).permute(0, 1, 3, 4, 2).contiguous() if not self.training: # inference if self.grid[i].shape[2:4] != x[i].shape[2:4] or self.onnx_dynamic: self.grid[i] = self._make_grid(nx, ny).to(x[i].device) y = x[i].sigmoid() if self.inplace: y[..., 0:2] = (y[..., 0:2] * 2. - 0.5 + self.grid[i]) * self.stride[i] # xy y[..., 2:4] = (y[..., 2:4] * 2) ** 2 * self.anchor_grid[i] # wh else: # for YOLOv5 on AWS Inferentia https://github.com/ultralytics/yolov5/pull/2953 xy = (y[..., 0:2] * 2. - 0.5 + self.grid[i]) * self.stride[i] # xy wh = (y[..., 2:4] * 2) ** 2 * self.anchor_grid[i].view(1, self.na, 1, 1, 2) # wh y = torch.cat((xy, wh, y[..., 4:]), -1) z.append(y.view(bs, -1, self.no)) return x if self.training else (torch.cat(z, 1), x) @staticmethod def _make_grid(nx=20, ny=20): yv, xv = torch.meshgrid([torch.arange(ny), torch.arange(nx)]) return torch.stack((xv, yv), 2).view((1, 1, ny, nx, 2)).float()

最新推荐

recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

实现实时数据湖架构:Kafka与Hive集成

![实现实时数据湖架构:Kafka与Hive集成](https://img-blog.csdnimg.cn/img_convert/10eb2e6972b3b6086286fc64c0b3ee41.jpeg) # 1. 实时数据湖架构概述** 实时数据湖是一种现代数据管理架构,它允许企业以低延迟的方式收集、存储和处理大量数据。与传统数据仓库不同,实时数据湖不依赖于预先定义的模式,而是采用灵活的架构,可以处理各种数据类型和格式。这种架构为企业提供了以下优势: - **实时洞察:**实时数据湖允许企业访问最新的数据,从而做出更明智的决策。 - **数据民主化:**实时数据湖使各种利益相关者都可
recommend-type

解答下列问题:S—>S;T|T;T—>a 构造任意项目集规范族,构造LR(0)分析表,并分析a;a

对于这个文法,我们可以构造以下项目集规范族: I0: S -> .S S -> .T T -> .a I1: S -> S. [$ T -> T. [$ I2: S -> T. I3: S -> S.;S S -> S.;T T -> T.;a 其中,点(.)表示已经被扫描过的符号,;$表示输入串的结束符号。 根据项目集规范族,我们可以构造出LR(0)分析表: 状态 | a | $ ---- | - | - I0 | s3| I1 | |acc I2 | | 其中s3表示移进到状态3,acc表示接受。在分析字符串a;a时,我们可以按照以下步骤进行
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

实现实时监控告警系统:Kafka与Grafana整合

![实现实时监控告警系统:Kafka与Grafana整合](https://imgconvert.csdnimg.cn/aHR0cHM6Ly9tbWJpei5xcGljLmNuL21tYml6X2pwZy9BVldpY3ladXVDbEZpY1pLWmw2bUVaWXFUcEdLT1VDdkxRSmQxZXB5R1lxaWNlUjA2c0hFek5Qc3FyRktudFF1VDMxQVl3QTRXV2lhSWFRMEFRc0I1cW1ZOGcvNjQw?x-oss-process=image/format,png) # 1.1 Kafka集群架构 Kafka集群由多个称为代理的服务器组成,这
recommend-type

mac上和window原生一样的历史剪切板工具有什么

好的,我明白了您的要求。关于您的问题,为使Mac与Windows的历史剪切板功能类似,可以使用第三方工具"CopyClip"、"Alfred"、"Clipboard Manager"等。这些工具可以记录您复制到剪切板的所有内容,而不仅仅是最后一次复制。同时,它们还可以进行搜索和过滤,以便您更快地找到需要的内容。希望这能回答您的问题。
recommend-type

c++校园超市商品信息管理系统课程设计说明书(含源代码) (2).pdf

校园超市商品信息管理系统课程设计旨在帮助学生深入理解程序设计的基础知识,同时锻炼他们的实际操作能力。通过设计和实现一个校园超市商品信息管理系统,学生掌握了如何利用计算机科学与技术知识解决实际问题的能力。在课程设计过程中,学生需要对超市商品和销售员的关系进行有效管理,使系统功能更全面、实用,从而提高用户体验和便利性。 学生在课程设计过程中展现了积极的学习态度和纪律,没有缺勤情况,演示过程流畅且作品具有很强的使用价值。设计报告完整详细,展现了对问题的深入思考和解决能力。在答辩环节中,学生能够自信地回答问题,展示出扎实的专业知识和逻辑思维能力。教师对学生的表现予以肯定,认为学生在课程设计中表现出色,值得称赞。 整个课程设计过程包括平时成绩、报告成绩和演示与答辩成绩三个部分,其中平时表现占比20%,报告成绩占比40%,演示与答辩成绩占比40%。通过这三个部分的综合评定,最终为学生总成绩提供参考。总评分以百分制计算,全面评估学生在课程设计中的各项表现,最终为学生提供综合评价和反馈意见。 通过校园超市商品信息管理系统课程设计,学生不仅提升了对程序设计基础知识的理解与应用能力,同时也增强了团队协作和沟通能力。这一过程旨在培养学生综合运用技术解决问题的能力,为其未来的专业发展打下坚实基础。学生在进行校园超市商品信息管理系统课程设计过程中,不仅获得了理论知识的提升,同时也锻炼了实践能力和创新思维,为其未来的职业发展奠定了坚实基础。 校园超市商品信息管理系统课程设计的目的在于促进学生对程序设计基础知识的深入理解与掌握,同时培养学生解决实际问题的能力。通过对系统功能和用户需求的全面考量,学生设计了一个实用、高效的校园超市商品信息管理系统,为用户提供了更便捷、更高效的管理和使用体验。 综上所述,校园超市商品信息管理系统课程设计是一项旨在提升学生综合能力和实践技能的重要教学活动。通过此次设计,学生不仅深化了对程序设计基础知识的理解,还培养了解决实际问题的能力和团队合作精神。这一过程将为学生未来的专业发展提供坚实基础,使其在实际工作中能够胜任更多挑战。
recommend-type

关系数据表示学习

关系数据卢多维奇·多斯桑托斯引用此版本:卢多维奇·多斯桑托斯。关系数据的表示学习机器学习[cs.LG]。皮埃尔和玛丽·居里大学-巴黎第六大学,2017年。英语。NNT:2017PA066480。电话:01803188HAL ID:电话:01803188https://theses.hal.science/tel-01803188提交日期:2018年HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaireUNIVERSITY PIERRE和 MARIE CURIE计算机科学、电信和电子学博士学院(巴黎)巴黎6号计算机科学实验室D八角形T HESIS关系数据表示学习作者:Ludovic DOS SAntos主管:Patrick GALLINARI联合主管:本杰明·P·伊沃瓦斯基为满足计算机科学博士学位的要求而提交的论文评审团成员:先生蒂埃里·A·退休记者先生尤尼斯·B·恩