并不完整 继续往下写
时间: 2024-12-11 17:25:54 浏览: 8
该文档 `correction-gan.txt` 提供了一个基于PyTorch实现的颜色校正模型(Color Correction GAN)的完整代码。以下是关键部分的详细说明:
### 模型结构
#### U-Net 架构
- **UNet** 类定义了基本的U-Net架构,用于图像分割任务。
```python
class UNet(nn.Module):
def __init__(self):
super(UNet, self).__init__()
self.encoder = nn.Sequential(
nn.Conv2d(3, 64, kernel_size=3, stride=1, padding=1),
nn.ReLU(),
nn.MaxPool2d(kernel_size=2, stride=2),
nn.Conv2d(64, 128, kernel_size=3, padding=1),
nn.ReLU(),
nn.MaxPool2d(2),
)
self.decoder = nn.Sequential(
nn.ConvTranspose2d(128, 64, kernel_size=2, stride=2),
nn.ReLU(),
nn.ConvTranspose2d(64, 3, kernel_size=2, stride=2),
nn.Sigmoid(),
)
def forward(self, x):
x = self.encoder(x)
x = self.decoder(x)
return x
```
#### 带注意力机制的U-Net
- **AttentionBlock** 类定义了注意力机制模块。
```python
class AttentionBlock(nn.Module):
def __init__(self, F_g, F_l, F_int):
super(AttentionBlock, self).__init__()
self.W_g = nn.Sequential(
nn.Conv2d(F_g, F_int, kernel_size=1, stride=1, padding=0, bias=True),
nn.BatchNorm2d(F_int)
)
self.W_x = nn.Sequential(
nn.Conv2d(F_l, F_int, kernel_size=1, stride=1, padding=0, bias=True),
nn.BatchNorm2d(F_int)
)
self.psi = nn.Sequential(
nn.Conv2d(F_int, 1, kernel_size=1, stride=1, padding=0, bias=True),
nn.BatchNorm2d(1),
nn.Sigmoid()
)
self.relu = nn.ReLU(inplace=True)
def forward(self, g, x):
g1 = self.W_g(g)
x1 = self.W_x(x)
psi = self.relu(g1 + x1)
psi = self.psi(psi)
return x * psi
```
- **AttentionUNet** 类定义了带注意力机制的U-Net架构。
```python
class AttentionUNet(nn.Module):
def __init__(self):
super(AttentionUNet, self).__init__()
# 编码器和瓶颈层
self.encoder1 = self.conv_block(3, 64)
self.encoder2 = self.conv_block(64, 128)
self.encoder3 = self.conv_block(128, 256)
self.encoder4 = self.conv_block(256, 512)
self.bottleneck = self.conv_block(512, 1024)
# 解码器和上采样层
self.upconv4 = nn.ConvTranspose2d(1024, 512, kernel_size=2, stride=2)
self.att4 = AttentionBlock(F_g=512, F_l=512, F_int=256)
self.decoder4 = self.conv_block(1024, 512)
self.upconv3 = nn.ConvTranspose2d(512, 256, kernel_size=2, stride=2)
self.att3 = AttentionBlock(F_g=256, F_l=256, F_int=128)
self.decoder3 = self.conv_block(512, 256)
self.upconv2 = nn.ConvTranspose2d(256, 128, kernel_size=2, stride=2)
self.att2 = AttentionBlock(F_g=128, F_l=128, F_int=64)
self.decoder2 = self.conv_block(256, 128)
self.upconv1 = nn.ConvTranspose2d(128, 64, kernel_size=2, stride=2)
self.att1 = AttentionBlock(F_g=64, F_l=64, F_int=32)
self.decoder1 = self.conv_block(128, 64)
# 输出层
self.final_conv = nn.Conv2d(64, 3, kernel_size=1, stride=1, padding=0)
self.sigmoid = nn.Sigmoid()
def conv_block(self, in_channels, out_channels):
return nn.Sequential(
nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=1, padding=1),
nn.BatchNorm2d(out_channels),
nn.ReLU(inplace=True),
nn.Conv2d(out_channels, out_channels, kernel_size=3, stride=1, padding=1),
nn.BatchNorm2d(out_channels),
nn.ReLU(inplace=True)
)
def forward(self, x):
e1 = self.encoder1(x)
e2 = self.encoder2(F.max_pool2d(e1, 2))
e3 = self.encoder3(F.max_pool2d(e2, 2))
e4 = self.encoder4(F.max_pool2d(e3, 2))
b = self.bottleneck(F.max_pool2d(e4, 2))
d4 = self.upconv4(b)
e4 = self.att4(g=d4, x=e4)
d4 = torch.cat((e4, d4), dim=1)
d4 = self.decoder4(d4)
d3 = self.upconv3(d4)
e3 = self.att3(g=d3, x=e3)
d3 = torch.cat((e3, d3), dim=1)
d3 = self.decoder3(d3)
d2 = self.upconv2(d3)
e2 = self.att2(g=d2, x=e2)
d2 = torch.cat((e2, d2), dim=1)
d2 = self.decoder2(d2)
d1 = self.upconv1(d2)
e1 = self.att1(g=d1, x=e1)
d1 = torch.cat((e1, d1), dim=1)
d1 = self.decoder1(d1)
out = self.final_conv(d1)
out = self.sigmoid(out)
return out
```
#### 生成器和判别器
- **Generator** 和 **Discriminator** 类分别定义了生成器和判别器。
```python
class Generator(nn.Module):
def __init__(self):
super(Generator, self).__init__()
# 与 AttentionUNet 相同的结构
class Discriminator(nn.Module):
def __init__(self):
super(Discriminator, self).__init__()
self.main = nn.Sequential(
nn.Conv2d(3, 64, kernel_size=4, stride=2, padding=1),
nn.LeakyReLU(0.2, inplace=True),
nn.Conv2d(64, 128, kernel_size=4, stride=2, padding=1),
nn.BatchNorm2d(128),
nn.LeakyReLU(0.2, inplace=True),
nn.Conv2d(128, 256, kernel_size=4, stride=2, padding=1),
nn.BatchNorm2d(256),
nn.LeakyReLU(0.2, inplace=True),
nn.Conv2d(256, 512, kernel_size=4, stride=2, padding=1),
nn.BatchNorm2d(512),
nn.LeakyReLU(0.2, inplace=True),
nn.Conv2d(512, 1, kernel_size=16),
)
def forward(self, x):
return self.main(x).view(-1)
```
### 数据集
- **ColorblindDataset** 类定义了颜色校正数据集。
```python
class ColorblindDataset(Dataset):
def __init__(self, image_dir, mode='train', transform=None):
self.image_dir = image_dir
self.mode = mode
self.transform = transform
self.normal_images = glob.glob(image_dir + '/' + mode + '/' + 'origin_image' + '/*')
self.recolor_images = glob.glob(image_dir + '/' + mode + '/' + 'recolor_image' + '/' + '*Protanopia*')
self.correct_images = glob.glob(image_dir + '/' + mode + '/' + 'correct_image' + '/*')
self.normal_images.sort()
self.recolor_images.sort()
self.correct_images.sort()
self.image_pair = []
for index, image in enumerate(self.normal_images):
self.image_pair.append([self.recolor_images[index], self.normal_images[index]])
def __len__(self):
return len(self.image_pair)
def __getitem__(self, idx):
recolor_path, normal_path = self.image_pair[idx]
recolor_image = Image.open(recolor_path).convert('RGB')
normal_image = Image.open(normal_path).convert('RGB')
if self.transform:
recolor_image = self.transform(recolor_image)
normal_image = self.transform(normal_image)
return recolor_image, normal_image
```
### 训练和验证函数
- **train_correction_model** 和 **validate_correction_model** 函数分别用于训练和验证模型。
```python
def train_correction_model(generator, discriminator, dataloader, optimizer_G, optimizer_D, device, lambda_gp, lambda_pixel, n_critic):
# 训练逻辑
pass
def validate_correction_model(generator, discriminator, dataloader, device, lambda_gp):
# 验证逻辑
pass
```
### 主函数
- **main** 函数负责解析命令行参数并启动训练过程。
```python
def main(args):
# 数据预处理和加载
transform = transforms.Compose([
transforms.Resize((256, 256)),
transforms.ToTensor(),
])
train_dataset = ColorblindDataset(args.dataset_dir, mode='train', transform=transform)
val_dataset = ColorblindDataset(args.dataset_dir, mode='val', transform=transform)
train_loader = DataLoader(train_dataset, batch_size=args.batch_size, num_workers=4, shuffle=True)
val_loader = DataLoader(val_dataset, batch_size=args.batch_size, num_workers=4, shuffle=False)
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
generator = Generator().to(device)
discriminator = Discriminator().to(device)
# 加载预训练模型权重
if args.generator_model_weight_path:
print(f"Loading generator weights from {args.generator_model_weight_path}")
generator.load_state_dict(torch.load(args.generator_model_weight_path))
if args.discriminator_model_weight_path:
print(f"Loading discriminator weights from {args.discriminator_model_weight_path}")
discriminator.load_state_dict(torch.load(args.discriminator_model_weight_path))
optimizer_G = optim.Adam(generator.parameters(), lr=args.generator_learning_rate, betas=(0.5, 0.999))
optimizer_D = optim.Adam(discriminator.parameters(), lr=args.discriminator_learning_rate, betas=(0.5, 0.999))
lambda_gp = args.lambda_gp
lambda_pixel = args.lambda_pixel
n_critic = args.n_critic
train_metrics = []
val_metrics = []
for epoch in range(1, args.num_epochs + 1):
train_g_loss, train_d_loss, train_iou, train_psnr, train_ssim = train_correction_model(
generator, discriminator, train_loader, optimizer_G, optimizer_D, device, lambda_gp, lambda_pixel, n_critic)
val_g_loss, val_d_loss, val_iou, val_psnr, val_ssim = validate_correction_model(
generator, discriminator, val_loader, device, lambda_gp)
train_metrics.append((train_g_loss, train_d_loss, train_iou, train_psnr, train_ssim))
val_metrics.append((val_g_loss, val_d_loss, val_iou, val_psnr, val_ssim))
print(f'Epoch {epoch}, Generator Training Loss: {train_g_loss:.4f}, Discriminator Training Loss: {train_d_loss:.4f}, IoU: {train_iou:.4f}, PSNR: {train_psnr:.4f}, SSIM: {train_ssim:.4f}')
print(f'Epoch {epoch}, Generator Validation Loss: {val_g_loss:.4f}, Discriminator Validation Loss: {val_d_loss:.4f}, IoU: {val_iou:.4f}, PSNR: {val_psnr:.4f}, SSIM: {val_ssim:.4f}')
plot_and_save_metrics(train_metrics, val_metrics, epoch)
torch.save(generator.state_dict(), args.generator_model_save_path)
torch.save(discriminator.state_dict(), args.discriminator_model_save_path)
visualize_results(generator, train_loader, device, save_path='./results/train')
visualize_results(generator, val_loader, device, save_path='./results/val')
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="Correction Model with WGAN-GP")
parser.add_argument('--dataset_dir', type=str, default='./dataset', help='数据集目录路径')
parser.add_argument('--batch_size', type=int, default=10, help='训练批次大小')
parser.add_argument('--generator_learning_rate', type=float, default=0.001, help='优化器学习率')
parser.add_argument('--discriminator_learning_rate', type=float, default=0.0001, help='优化器学习率')
parser.add_argument('--lambda_pixel', type=float, default=10.0, help='像素级损失的权重')
parser.add_argument('--lambda_gp', type=float, default=10.0, help='梯度惩罚系数')
parser.add_argument('--n_critic', type=int, default=8, help='判别器更新次数')
parser.add_argument('--num_epochs', type=int, default=100, help='训练的轮数')
parser.add_argument('--generator_model_save_path', type=str, default='./model_weights/generator.pth', help='保存训练好的生成器模型的路径')
parser.add_argument('--discriminator_model_save_path', type=str, default='./model_weights/discriminator.pth', help='保存训练好的判别器模型的路径')
parser.add_argument('--generator_model_weight_path', type=str, default='', help='预训练的生成器模型的路径')
parser.add_argument('--discriminator_model_weight_path', type=str, default='', help='预训练的判别器模型的路径')
args = parser.parse_args()
main(args)
```
### 可视化和指标计算
- **visualize_results** 和 **plot_and_save_metrics** 函数用于可视化结果和绘制训练指标图。
```python
def visualize_results(generator, dataloader, device, num_images=10, save_path='./results'):
# 可视化结果
pass
def plot_and_save_metrics(train_metrics, val_metrics, epoch, path='./metrics_plots'):
# 绘制和保存训练指标图
pass
```
### 总结
这个文档提供了一个完整的颜色校正模型的实现,包括生成器、判别器、注意力机制、数据集加载、训练和验证流程以及结果可视化。通过使用WGAN-GP框架,该模型能够有效地进行颜色校正任务,并提供了多种评估指标来衡量模型性能。
阅读全文