dqn算法解决不同问题的实例代码实现
时间: 2023-11-02 14:03:00 浏览: 232
DQN(Deep Q-Network)是深度强化学习的一种算法,用于解决不同问题的实例代码实现如下所示:
```python
import numpy as np
import tensorflow as tf
from tensorflow.keras.layers import Dense
# 创建DQN agent类
class DQNAgent:
def __init__(self, state_size, action_size):
self.state_size = state_size
self.action_size = action_size
self.memory = [] # 记忆回放缓存
self.gamma = 0.95 # discount rate
self.epsilon = 1.0 # 探索和开发的权衡
self.epsilon_decay = 0.995 # epsilon衰减率
self.epsilon_min = 0.01 # epsilon的最小值
self.learning_rate = 0.001 # 学习率
self.model = self.build_model() # 创建神经网络模型
# 创建DQN模型
def build_model(self):
model = tf.keras.Sequential()
model.add(Dense(24, input_dim=self.state_size, activation='relu'))
model.add(Dense(24, activation='relu'))
model.add(Dense(self.action_size, activation='linear'))
model.compile(loss='mse', optimizer=tf.keras.optimizers.Adam(lr=self.learning_rate))
return model
# 储存记忆
def remember(self, state, action, reward, next_state, done):
self.memory.append((state, action, reward, next_state, done))
# 根据当前状态选择动作
def act(self, state):
if np.random.rand() <= self.epsilon:
return np.random.choice(self.action_size)
act_values = self.model.predict(state)
return np.argmax(act_values[0])
# 训练模型
def train(self, batch_size):
minibatch = np.random.choice(len(self.memory), batch_size, replace=False)
for state, action, reward, next_state, done in minibatch:
target = reward
if not done:
target = reward + self.gamma * np.amax(self.model.predict(next_state)[0])
target_f = self.model.predict(state)
target_f[0][action] = target
self.model.fit(state, target_f, epochs=1, verbose=0)
if self.epsilon > self.epsilon_min:
self.epsilon *= self.epsilon_decay
# 加载模型
def load(self, name):
self.model.load_weights(name)
# 保存模型
def save(self, name):
self.model.save_weights(name)
# 示例代码实现
env = gym.make('CartPole-v0') # 创建环境
state_size = env.observation_space.shape[0]
action_size = env.action_space.n
agent = DQNAgent(state_size, action_size) # 创建DQN agent对象
batch_size = 32
num_episodes = 1000
for episode in range(num_episodes):
state = env.reset()
state = np.reshape(state, [1, state_size])
done = False
for time in range(500):
# env.render() # 可选,用于显示游戏界面
action = agent.act(state) # 根据当前状态选择动作
next_state, reward, done, _ = env.step(action)
reward = reward if not done else -10
next_state = np.reshape(next_state, [1, state_size])
agent.remember(state, action, reward, next_state, done) # 储存记忆
state = next_state
if done:
print("episode: {}/{}, score: {}, e: {:.2}".format(episode, num_episodes, time, agent.epsilon))
break
if len(agent.memory) > batch_size:
agent.train(batch_size) # 模型训练
# 保存模型
agent.save("dqn_model.h5")
```
以上是DQN算法解决问题的一个简单实例代码实现,其中使用`gym`库创建了一个`CartPole-v0`的环境。在每个episode中,根据当前状态选择动作,与环境交互并获得奖励,然后将这些信息存储在记忆中,最后使用记忆进行训练来更新DQN模型。模型训练过程中还使用了经验回放(Experience Replay)和目标网络(Target Network)的技术来提高学习效果。
阅读全文