opensbi ipi
时间: 2023-11-02 19:57:56 浏览: 208
根据提供的引用内容,关于OpenSBI中的IPI(Inter-Processor Interrupt,处理器间中断)的部分,我们可以在引用和引用中找到相关的信息。
在OpenSBI中,存在一个名为sbi_ipi_send_many的函数用于发送IPI。该函数可以向多个处理器发送IPI,并在处理器之间进行通信。具体实现请参考OpenSBI源码。
此外,还可以在引用和引用中找到关于IPI初始化的信息。在引用中的sbi_hsm_init函数中,如果是冷启动(cold_boot),会为每个核心初始化HART状态数据,并在其中设置主核心的状态为SBI_HART_STARTING。而在引用中的sbi_hart_init函数中,还会进行一些系统寄存器的初始化,使能用户模式或监管模式下使用的性能计数器,并设置一些中断和异常的委托。
综上所述,OpenSBI中有相关的函数用于发送IPI以及初始化IPI。具体实现细节可以参考OpenSBI源码。
: <https://github.com/riscv/opensbi/blob/master/sbi/hsm.c>
: <https://github.com/riscv/opensbi/blob/master/sbi/hart.c>
相关问题
opensbi extension
回答: 在opensbi中,extension是指riscv sbi extension的实现,每个extension对应一个sbi_ecall_extension结构体,通过sbi_ecall_init函数组织成一个双链表。当S态软件调用ecall陷入opensbi时,opensbi会根据a7寄存器保存的extension id,在这个双链表中查找,来确定S态软件希望调用哪个extension。\[1\] opensbi还提供了一些预定义的sbi_ipi_event_ops,用于实现不同的功能,比如发送ipi、关机和远程内存同步等。\[3\]此外,opensbi还采用了一种简单粗暴的方法来修改设备树,使用了fdt_open_into和fdt_splice_等辅助函数。\[2\]
#### 引用[.reference_title]
- *1* *2* *3* [opensbi firmware源码分析(3)](https://blog.csdn.net/passenger12234/article/details/126290115)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^control_2,239^v3^insert_chatgpt"}} ] [.reference_item]
[ .reference_list ]
# 安装并加载randomForest包 # install.packages("randomForest") library(randomForest) # 读取数据集 data <- read.csv("IPIafter.csv") # 创建数据集data data <- data.frame( gender = data$gender, age = data$age, height = data$height, weight = data$weight, opreat.or.not = data$opreat.or.not, history.ill = data$history.ill, smoking = data$smoking, drinking = data$drinking, PONV = data$PONV, history.yundong = data$history.yundong, B.or.R = data$B.or.R, IPI00 = data$IPI00, IPI005 = data$IPI005, IPI1 = data$IPI1, IPIjinjing = data$IPIjinjing, IPI015 = data$IPI015, IPI2 = data$IPI2, IPI025 = data$IPI025, IPI3 = data$IPI3 ) # 构建随机森林模型 model <- randomForest(IPI005 + IPI1 + IPIjinjing + IPI015 + IPI2 + IPI025 + IPI3 ~ ., data = data) # 新数据 new_data <- data.frame( gender = c("F", "F", "M", "F", "F", "F", "M"), age = c(72, 61, 58, 65, 55, 47, 55), height = c(158, 159, 169, 154, 160, 162, 178), weight = c(50, 70, 83, 60, 60, 67, 105), opreat.or.not = c(0, 0, 0, 0, 0, 1, 0), history.ill = c(0, 0, 0, 1, 0, 1, 0), smoking = c("never", "never", "never", "never", "never", "never", "never"), drinking = c(0, 0, 0, 0, 0, 0, 0), PONV = c(0, 0, 0, 0, 0, 0, 0), history.yundong = c(0, 0, 0, 0, 0, 0, 0), B.or.R = c("B", "B", "R", "R", "R", "R", "R"), IPI00 = c(10, 10, 9, 6, 10, 10, 7), IPI005 = NA, # 新数据的目标变量待预测 IPI1 = NA, IPIjinjing = NA, IPI015 = NA, IPI2 = NA, IPI025 = NA, IPI3 = NA ) # 预测数据集中的观测值 new_predictions <- predict(model, newdata = new_data) # 打印预测结果 print(new_predictions) 根据我这个改写
# 安装并加载randomForest包
library(randomForest)
# 读取数据集
data <- read.csv("IPIafter.csv")
# 创建数据集data
data <- data.frame(
gender = data$gender,
age = data$age,
height = data$height,
weight = data$weight,
opreat.or.not = data$opreat.or.not,
history.ill = data$history.ill,
smoking = data$smoking,
drinking = data$drinking,
PONV = data$PONV,
history.yundong = data$history.yundong,
B.or.R = data$B.or.R,
IPI00 = data$IPI00,
IPI005 = data$IPI005,
IPI1 = data$IPI1,
IPIjinjing = data$IPIjinjing,
IPI015 = data$IPI015,
IPI2 = data$IPI2,
IPI025 = data$IPI025,
IPI3 = data$IPI3
)
# 构建随机森林模型
model <- randomForest(IPI005 + IPI1 + IPIjinjing + IPI015 + IPI2 + IPI025 + IPI3 ~ ., data = data)
# 新数据
new_data <- data.frame(
gender = c("F", "F", "M", "F", "F", "F", "M"),
age = c(72, 61, 58, 65, 55, 47, 55),
height = c(158, 159, 169, 154, 160, 162, 178),
weight = c(50, 70, 83, 60, 60, 67, 105),
opreat.or.not = c(0, 0, 0, 0, 0, 1, 0),
history.ill = c(0, 0, 0, 1, 0, 1, 0),
smoking = c("never", "never", "never", "never", "never", "never", "never"),
drinking = c(0, 0, 0, 0, 0, 0, 0),
PONV = c(0, 0, 0, 0, 0, 0, 0),
history.yundong = c(0, 0, 0, 0, 0, 0, 0),
B.or.R = c("B", "B", "R", "R", "R", "R", "R"),
IPI00 = c(10, 10, 9, 6, 10, 10, 7),
IPI005 = NA, # 新数据的目标变量待预测
IPI1 = NA,
IPIjinjing = NA,
IPI015 = NA,
IPI2 = NA,
IPI025 = NA,
IPI3 = NA
)
# 预测数据集中的观测值
new_predictions <- predict(model, newdata = new_data)
# 打印预测结果
print(new_predictions)
阅读全文