opensbi ipi

时间: 2023-11-02 19:57:56 浏览: 208
根据提供的引用内容,关于OpenSBI中的IPI(Inter-Processor Interrupt,处理器间中断)的部分,我们可以在引用和引用中找到相关的信息。 在OpenSBI中,存在一个名为sbi_ipi_send_many的函数用于发送IPI。该函数可以向多个处理器发送IPI,并在处理器之间进行通信。具体实现请参考OpenSBI源码。 此外,还可以在引用和引用中找到关于IPI初始化的信息。在引用中的sbi_hsm_init函数中,如果是冷启动(cold_boot),会为每个核心初始化HART状态数据,并在其中设置主核心的状态为SBI_HART_STARTING。而在引用中的sbi_hart_init函数中,还会进行一些系统寄存器的初始化,使能用户模式或监管模式下使用的性能计数器,并设置一些中断和异常的委托。 综上所述,OpenSBI中有相关的函数用于发送IPI以及初始化IPI。具体实现细节可以参考OpenSBI源码。 : <https://github.com/riscv/opensbi/blob/master/sbi/hsm.c> : <https://github.com/riscv/opensbi/blob/master/sbi/hart.c>
相关问题

opensbi extension

回答: 在opensbi中,extension是指riscv sbi extension的实现,每个extension对应一个sbi_ecall_extension结构体,通过sbi_ecall_init函数组织成一个双链表。当S态软件调用ecall陷入opensbi时,opensbi会根据a7寄存器保存的extension id,在这个双链表中查找,来确定S态软件希望调用哪个extension。\[1\] opensbi还提供了一些预定义的sbi_ipi_event_ops,用于实现不同的功能,比如发送ipi、关机和远程内存同步等。\[3\]此外,opensbi还采用了一种简单粗暴的方法来修改设备树,使用了fdt_open_into和fdt_splice_等辅助函数。\[2\] #### 引用[.reference_title] - *1* *2* *3* [opensbi firmware源码分析(3)](https://blog.csdn.net/passenger12234/article/details/126290115)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^control_2,239^v3^insert_chatgpt"}} ] [.reference_item] [ .reference_list ]

# 安装并加载randomForest包 # install.packages("randomForest") library(randomForest) # 读取数据集 data <- read.csv("IPIafter.csv") # 创建数据集data data <- data.frame( gender = data$gender, age = data$age, height = data$height, weight = data$weight, opreat.or.not = data$opreat.or.not, history.ill = data$history.ill, smoking = data$smoking, drinking = data$drinking, PONV = data$PONV, history.yundong = data$history.yundong, B.or.R = data$B.or.R, IPI00 = data$IPI00, IPI005 = data$IPI005, IPI1 = data$IPI1, IPIjinjing = data$IPIjinjing, IPI015 = data$IPI015, IPI2 = data$IPI2, IPI025 = data$IPI025, IPI3 = data$IPI3 ) # 构建随机森林模型 model <- randomForest(IPI005 + IPI1 + IPIjinjing + IPI015 + IPI2 + IPI025 + IPI3 ~ ., data = data) # 新数据 new_data <- data.frame( gender = c("F", "F", "M", "F", "F", "F", "M"), age = c(72, 61, 58, 65, 55, 47, 55), height = c(158, 159, 169, 154, 160, 162, 178), weight = c(50, 70, 83, 60, 60, 67, 105), opreat.or.not = c(0, 0, 0, 0, 0, 1, 0), history.ill = c(0, 0, 0, 1, 0, 1, 0), smoking = c("never", "never", "never", "never", "never", "never", "never"), drinking = c(0, 0, 0, 0, 0, 0, 0), PONV = c(0, 0, 0, 0, 0, 0, 0), history.yundong = c(0, 0, 0, 0, 0, 0, 0), B.or.R = c("B", "B", "R", "R", "R", "R", "R"), IPI00 = c(10, 10, 9, 6, 10, 10, 7), IPI005 = NA, # 新数据的目标变量待预测 IPI1 = NA, IPIjinjing = NA, IPI015 = NA, IPI2 = NA, IPI025 = NA, IPI3 = NA ) # 预测数据集中的观测值 new_predictions <- predict(model, newdata = new_data) # 打印预测结果 print(new_predictions) 根据我这个改写

# 安装并加载randomForest包 library(randomForest) # 读取数据集 data <- read.csv("IPIafter.csv") # 创建数据集data data <- data.frame( gender = data$gender, age = data$age, height = data$height, weight = data$weight, opreat.or.not = data$opreat.or.not, history.ill = data$history.ill, smoking = data$smoking, drinking = data$drinking, PONV = data$PONV, history.yundong = data$history.yundong, B.or.R = data$B.or.R, IPI00 = data$IPI00, IPI005 = data$IPI005, IPI1 = data$IPI1, IPIjinjing = data$IPIjinjing, IPI015 = data$IPI015, IPI2 = data$IPI2, IPI025 = data$IPI025, IPI3 = data$IPI3 ) # 构建随机森林模型 model <- randomForest(IPI005 + IPI1 + IPIjinjing + IPI015 + IPI2 + IPI025 + IPI3 ~ ., data = data) # 新数据 new_data <- data.frame( gender = c("F", "F", "M", "F", "F", "F", "M"), age = c(72, 61, 58, 65, 55, 47, 55), height = c(158, 159, 169, 154, 160, 162, 178), weight = c(50, 70, 83, 60, 60, 67, 105), opreat.or.not = c(0, 0, 0, 0, 0, 1, 0), history.ill = c(0, 0, 0, 1, 0, 1, 0), smoking = c("never", "never", "never", "never", "never", "never", "never"), drinking = c(0, 0, 0, 0, 0, 0, 0), PONV = c(0, 0, 0, 0, 0, 0, 0), history.yundong = c(0, 0, 0, 0, 0, 0, 0), B.or.R = c("B", "B", "R", "R", "R", "R", "R"), IPI00 = c(10, 10, 9, 6, 10, 10, 7), IPI005 = NA, # 新数据的目标变量待预测 IPI1 = NA, IPIjinjing = NA, IPI015 = NA, IPI2 = NA, IPI025 = NA, IPI3 = NA ) # 预测数据集中的观测值 new_predictions <- predict(model, newdata = new_data) # 打印预测结果 print(new_predictions)
阅读全文

相关推荐

最新推荐

recommend-type

TMS320C6678多核DSP的核间通信方法

TMS320C6678通过处理器间中断(Inter-Processor Interrupts, IPI)和核间通信寄存器来实现核间通信。中断控制器INTC在KeyStone架构中扮演重要角色,它负责管理15个中断源,包括硬件异常、不可屏蔽中断、复位和可屏蔽...
recommend-type

DAS_NAS_SAN概念及比较

支持 HIP PI 、IPI、SCSI、IP、ATM 等多种高级协议,它的最大特性是将网络和设备的通讯协议与传输物理介质隔离开。 DAS、NAS 和 SAN 都是不同的存储架构,每种架构都有其优缺点,在选择存储架构时,需要根据实际...
recommend-type

精细金属掩模板(FMM)行业研究报告 显示技术核心部件FMM材料产业分析与市场应用

精细金属掩模板(FMM)作为OLED蒸镀工艺中的核心消耗部件,负责沉积RGB有机物质形成像素。材料由Frame、Cover等五部分组成,需满足特定热膨胀性能。制作工艺包括蚀刻、电铸等,影响FMM性能。适用于显示技术研究人员、产业分析师,旨在提供FMM材料技术发展、市场规模及产业链结构的深入解析。
recommend-type

【创新未发表】斑马算法ZOA-Kmean-Transformer-LSTM负荷预测Matlab源码 9515期.zip

CSDN海神之光上传的全部代码均可运行,亲测可用,直接替换数据即可,适合小白; 1、代码压缩包内容 主函数:Main.m; 调用函数:其他m文件;无需运行 运行结果效果图; 2、代码运行版本 Matlab 2024b;若运行有误,根据提示修改;若不会,可私信博主; 3、运行操作步骤 步骤一:将所有文件放到Matlab的当前文件夹中; 步骤二:双击打开除Main.m的其他m文件; 步骤三:点击运行,等程序运行完得到结果; 4、仿真咨询 如需其他服务,可私信博主或扫描博主博客文章底部QQ名片; 4.1 CSDN博客或资源的完整代码提供 4.2 期刊或参考文献复现 4.3 Matlab程序定制 4.4 科研合作 智能优化算法优化Kmean-Transformer-LSTM负荷预测系列程序定制或科研合作方向: 4.4.1 遗传算法GA/蚁群算法ACO优化Kmean-Transformer-LSTM负荷预测 4.4.2 粒子群算法PSO/蛙跳算法SFLA优化Kmean-Transformer-LSTM负荷预测 4.4.3 灰狼算法GWO/狼群算法WPA优化Kmean-Transformer-LSTM负荷预测 4.4.4 鲸鱼算法WOA/麻雀算法SSA优化Kmean-Transformer-LSTM负荷预测 4.4.5 萤火虫算法FA/差分算法DE优化Kmean-Transformer-LSTM负荷预测 4.4.6 其他优化算法优化Kmean-Transformer-LSTM负荷预测
recommend-type

Angular实现MarcHayek简历展示应用教程

资源摘要信息:"MarcHayek-CV:我的简历的Angular应用" Angular 应用是一个基于Angular框架开发的前端应用程序。Angular是一个由谷歌(Google)维护和开发的开源前端框架,它使用TypeScript作为主要编程语言,并且是单页面应用程序(SPA)的优秀解决方案。该应用不仅展示了Marc Hayek的个人简历,而且还介绍了如何在本地环境中设置和配置该Angular项目。 知识点详细说明: 1. Angular 应用程序设置: - Angular 应用程序通常依赖于Node.js运行环境,因此首先需要全局安装Node.js包管理器npm。 - 在本案例中,通过npm安装了两个开发工具:bower和gulp。bower是一个前端包管理器,用于管理项目依赖,而gulp则是一个自动化构建工具,用于处理如压缩、编译、单元测试等任务。 2. 本地环境安装步骤: - 安装命令`npm install -g bower`和`npm install --global gulp`用来全局安装这两个工具。 - 使用git命令克隆远程仓库到本地服务器。支持使用SSH方式(`***:marc-hayek/MarcHayek-CV.git`)和HTTPS方式(需要替换为具体用户名,如`git clone ***`)。 3. 配置流程: - 在server文件夹中的config.json文件里,需要添加用户的电子邮件和密码,以便该应用能够通过内置的联系功能发送信息给Marc Hayek。 - 如果想要在本地服务器上运行该应用程序,则需要根据不同的环境配置(开发环境或生产环境)修改config.json文件中的“baseURL”选项。具体而言,开发环境下通常设置为“../build”,生产环境下设置为“../bin”。 4. 使用的技术栈: - JavaScript:虽然没有直接提到,但是由于Angular框架主要是用JavaScript来编写的,因此这是必须理解的核心技术之一。 - TypeScript:Angular使用TypeScript作为开发语言,它是JavaScript的一个超集,添加了静态类型检查等功能。 - Node.js和npm:用于运行JavaScript代码以及管理JavaScript项目的依赖。 - Git:版本控制系统,用于代码的版本管理及协作开发。 5. 关于项目结构: - 该应用的项目文件夹结构可能遵循Angular CLI的典型结构,包含了如下目录:app(存放应用组件)、assets(存放静态资源如图片、样式表等)、environments(存放环境配置文件)、server(存放服务器配置文件如上文的config.json)等。 6. 开发和构建流程: - 开发时,可能会使用Angular CLI来快速生成组件、服务等,并利用热重载等特性进行实时开发。 - 构建应用时,通过gulp等构建工具可以进行代码压缩、ES6转译、单元测试等自动化任务,以确保代码的质量和性能优化。 7. 部署: - 项目最终需要部署到服务器上,配置文件中的“baseURL”选项指明了服务器上的资源基础路径。 8. 关于Git仓库: - 压缩包子文件的名称为MarcHayek-CV-master,表明这是一个使用Git版本控制的仓库,且存在一个名为master的分支,这通常是项目的主分支。 以上知识点围绕Angular应用“MarcHayek-CV:我的简历”的创建、配置、开发、构建及部署流程进行了详细说明,涉及了前端开发中常见的工具、技术及工作流。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

深入剖析:内存溢出背后的原因、预防及应急策略(专家版)

![深入剖析:内存溢出背后的原因、预防及应急策略(专家版)](https://d8it4huxumps7.cloudfront.net/uploads/images/65e82a01a4196_dangling_pointer_in_c_2.jpg?d=2000x2000) 参考资源链接:[Net 内存溢出(System.OutOfMemoryException)的常见情况和处理方式总结](https://wenku.csdn.net/doc/6412b784be7fbd1778d4a95f?spm=1055.2635.3001.10343) # 1. 内存溢出的概念及影响 内存溢出,又称
recommend-type

Java中如何对年月日时分秒的日期字符串作如下处理:如何日期分钟介于两个相连的半点之间,就将分钟数调整为前半点

在Java中,你可以使用`java.time`包中的类来处理日期和时间,包括格式化和调整。下面是一个示例,展示了如何根据给定的日期字符串(假设格式为"yyyy-MM-dd HH:mm:ss")进行这样的处理: ```java import java.text.SimpleDateFormat; import java.time.LocalDateTime; import java.time.ZoneId; import java.time.ZonedDateTime; public class Main { public static void main(String[] args
recommend-type

Crossbow Spot最新更新 - 获取Chrome扩展新闻

资源摘要信息:"Crossbow Spot - Latest News Update-crx插件" 该信息是关于一款特定的Google Chrome浏览器扩展程序,名为"Crossbow Spot - Latest News Update"。此插件的目的是帮助用户第一时间获取最新的Crossbow Spot相关信息,它作为一个RSS阅读器,自动聚合并展示Crossbow Spot的最新新闻内容。 从描述中可以提取以下关键知识点: 1. 功能概述: - 扩展程序能让用户领先一步了解Crossbow Spot的最新消息,提供实时更新。 - 它支持自动更新功能,用户不必手动点击即可刷新获取最新资讯。 - 用户界面设计灵活,具有美观的新闻小部件,使得信息的展现既实用又吸引人。 2. 用户体验: - 桌面通知功能,通过Chrome的新通知中心托盘进行实时推送,确保用户不会错过任何重要新闻。 - 提供一个便捷的方式来保持与Crossbow Spot最新动态的同步。 3. 语言支持: - 该插件目前仅支持英语,但开发者已经计划在未来的版本中添加对其他语言的支持。 4. 技术实现: - 此扩展程序是基于RSS Feed实现的,即从Crossbow Spot的RSS源中提取最新新闻。 - 扩展程序利用了Chrome的通知API,以及RSS Feed处理机制来实现新闻的即时推送和展示。 5. 版权与免责声明: - 所有的新闻内容都是通过RSS Feed聚合而来,扩展程序本身不提供原创内容。 - 用户在使用插件时应遵守相关的版权和隐私政策。 6. 安装与使用: - 用户需要从Chrome网上应用店下载.crx格式的插件文件,即Crossbow_Spot_-_Latest_News_Update.crx。 - 安装后,插件会自动运行,并且用户可以对其进行配置以满足个人偏好。 从以上信息可以看出,该扩展程序为那些对Crossbow Spot感兴趣或需要密切跟进其更新的用户提供了一个便捷的解决方案,通过集成RSS源和Chrome通知机制,使得信息获取变得更加高效和及时。这对于需要实时更新信息的用户而言,具有一定的实用价值。同时,插件的未来发展计划中包括了多语言支持,这将使得更多的用户能够使用并从中受益。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依