pytorch 数据分析 示例.
时间: 2024-09-20 19:15:39 浏览: 45
PyTorch 是一个开源的深度学习框架,用于构建和训练神经网络。数据分析示例通常涉及到数据预处理、模型训练、评估以及结果可视化。这里有一个简单的 PyTorch 数据分析的概述:
1. **数据加载**:
```python
import torch
from torch.utils.data import DataLoader, Dataset
class CustomDataset(Dataset):
def __init__(self, data, labels):
self.data = data
self.labels = labels
dataset = CustomDataset(data_tensor, label_tensor)
dataloader = DataLoader(dataset, batch_size=32, shuffle=True)
```
2. **数据预处理**:
```python
def preprocess_data(sample):
# 图像归一化、标准化或转换成Tensor等操作
return sample / 255.0 # 假设是图片数据
for data, _ in dataloader:
data = preprocess_data(data)
```
3. **模型定义**:
```python
model = torch.nn.Sequential(
torch.nn.Linear(input_dim, hidden_dim),
torch.nn.ReLU(),
torch.nn.Linear(hidden_dim, output_dim)
)
```
4. **训练过程**:
```python
criterion = torch.nn.CrossEntropyLoss()
optimizer = torch.optim.Adam(model.parameters(), lr=0.001)
for epoch in range(num_epochs):
for inputs, targets in dataloader:
outputs = model(inputs)
loss = criterion(outputs, targets)
optimizer.zero_grad()
loss.backward()
optimizer.step()
```
5. **模型评估与预测**:
```python
model.eval()
with torch.no_grad():
predictions = model(test_dataloader.dataset)
correct_count = (predictions.argmax(dim=1) == test_labels).sum().item()
accuracy = correct_count / len(test_labels)
```
6. **结果分析与可视化**:
```python
import matplotlib.pyplot as plt
confusion_matrix = torch.confusion_matrix(test_labels, predictions)
plt.imshow(confusion_matrix, cmap='Blues')
plt.xlabel('Predicted')
plt.ylabel('Actual')
plt.show()
```
阅读全文