TCN-BIGRU代码
时间: 2024-01-03 13:04:24 浏览: 252
抱歉,我之前的回答有误。以下是关于TCN-BIGRU的 Python 代码实现示例:
```python
import torch
import torch.nn as nn
from torch.nn.utils import weight_norm
class TemporalBlock(nn.Module):
def __init__(self, n_inputs, n_outputs, kernel_size, stride, dilation, padding):
super(TemporalBlock, self).__init__()
self.conv1 = weight_norm(nn.Conv1d(n_inputs, n_outputs, kernel_size, stride=stride, padding=padding, dilation=dilation))
self.relu1 = nn.ReLU()
self.dropout1 = nn.Dropout(0.2)
self.conv2 = weight_norm(nn.Conv1d(n_outputs, n_outputs, kernel_size, stride=stride, padding=padding, dilation=dilation))
self.relu2 = nn.ReLU()
self.dropout2 = nn.Dropout(0.2)
self.net = nn.Sequential(
self.conv1,
self.relu1,
self.dropout1,
self.conv2,
self.relu2,
self.dropout2
)
self.downsample = nn.Conv1d(n_inputs, n_outputs, 1) if n_inputs != n_outputs else None
self.relu = nn.ReLU()
def forward(self, x):
out = self.net(x)
res = x if self.downsample is None else self.downsample(x)
return self.relu(out + res)
class TemporalConvNet(nn.Module):
def __init__(self, num_inputs, num_channels, kernel_size=2, dropout=0.2):
super(TemporalConvNet, self).__init__()
layers = []
num_levels = len(num_channels)
for i in range(num_levels):
dilation_size = 2 ** i
in_channels = num_inputs if i == 0 else num_channels[i-1]
out_channels = num_channels[i]
layers += [TemporalBlock(in_channels, out_channels, kernel_size, stride=1, dilation=dilation_size, padding=(kernel_size-1)*dilation_size)]
self.network = nn.Sequential(*layers)
def forward(self, x):
return self.network(x)
class TCN(nn.Module):
def __init__(self, input_size, output_size, num_channels, tcn_kernel_size):
super(TCN, self).__init__()
self.tcn = TemporalConvNet(input_size, num_channels, kernel_size=tcn_kernel_size)
self.bigru = nn.GRU(num_channels[-1], hidden_size=num_channels[-1]//2, bidirectional=True)
self.linear = nn.Linear(num_channels[-1]*2, output_size)
def forward(self, x):
tcn_out = self.tcn(x.transpose(1, 2)).transpose(1, 2)
bigru_out, _ = self.bigru(tcn_out.permute(2, 0, 1))
out = self.linear(bigru_out[-1])
return out
```
其中,TCN是Temporal Convolutional Neural Network的缩写,BIGRU是 Bidirectional Gated Recurrent Unit 的缩写。
阅读全文
相关推荐
![pdf](https://img-home.csdnimg.cn/images/20241231044930.png)
![zip](https://img-home.csdnimg.cn/images/20241231045053.png)
![zip](https://img-home.csdnimg.cn/images/20241231045053.png)
![-](https://img-home.csdnimg.cn/images/20241231044955.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![zip](https://img-home.csdnimg.cn/images/20241231045053.png)
![rar](https://img-home.csdnimg.cn/images/20241231044955.png)
![rar](https://img-home.csdnimg.cn/images/20241231044955.png)
![rar](https://img-home.csdnimg.cn/images/20241231044955.png)
![rar](https://img-home.csdnimg.cn/images/20241231044955.png)
![zip](https://img-home.csdnimg.cn/images/20241231045053.png)
![zip](https://img-home.csdnimg.cn/images/20241231045053.png)
![rar](https://img-home.csdnimg.cn/images/20241231044955.png)
![zip](https://img-home.csdnimg.cn/images/20241231045053.png)
![rar](https://img-home.csdnimg.cn/images/20241231044955.png)
![rar](https://img-home.csdnimg.cn/images/20241231044955.png)
![rar](https://img-home.csdnimg.cn/images/20241231044955.png)
![rar](https://img-home.csdnimg.cn/images/20241231044955.png)
![-](https://img-home.csdnimg.cn/images/20241231044955.png)