在HungarianMatcher这个函数中,它对于输入的数据格式要求如下,请模拟出数据,其中batch_size为2,num_class为4: outputs: This is a dict that contains at least these entries: "pred_logits": Tensor of dim [batch_size, num_queries, num_classes] with the classification logits "pred_boxes": Tensor of dim [batch_size, num_queries, 4] with the predicted box coordinates targets: This is a list of targets (len(targets) = batch_size), where each target is a dict containing: "labels": Tensor of dim [num_target_boxes] (where num_target_boxes is the number of ground-truth objects in the target) containing the class labels "boxes": Tensor of dim [num_target_boxes, 4] containing the target box coordinates
时间: 2024-02-14 12:29:25 浏览: 69
Training Batch 2_28-70.zip_batch_tumor_肝脏_肝脏肿瘤数据
根据HungarianMatcher函数对输入数据格式的要求,我将模拟出一个具有批量大小为2和4个类别的数据示例。
```python
import torch
# 模拟预测结果
pred_logits = torch.randn(2, 5, 4) # (batch_size, num_queries, num_classes)
pred_boxes = torch.randn(2, 5, 4) # (batch_size, num_queries, 4)
# 模拟目标数据
target_1 = {
"labels": torch.tensor([0, 1, 2]), # (num_target_boxes,)
"boxes": torch.tensor([[10, 20, 100, 150], [50, 60, 200, 180], [70, 90, 120, 220]]) # (num_target_boxes, 4)
}
target_2 = {
"labels": torch.tensor([1, 2]), # (num_target_boxes,)
"boxes": torch.tensor([[40, 50, 120, 150], [80, 90, 160, 180]]) # (num_target_boxes, 4)
}
# 创建DETR输出结果字典和目标列表
outputs = {
"pred_logits": pred_logits,
"pred_boxes": pred_boxes
}
targets = [target_1, target_2]
```
在这个例子中,我们创建了一个具有批量大小为2的DETR模型的预测结果和两个目标。`pred_logits`是一个形状为(2, 5, 4)的张量,表示两个样本中每个样本的5个预测框的类别预测。`pred_boxes`是一个形状为(2, 5, 4)的张量,表示两个样本中每个样本的5个预测框的坐标预测。
`target_1`和`target_2`是两个目标样本,每个目标样本都是一个字典,包含了目标的类别标签和边界框坐标。`target_1["labels"]`是一个形状为(3,)的张量,包含了`target_1`中3个目标的类别标签。`target_1["boxes"]`是一个形状为(3, 4)的张量,包含了`target_1`中3个目标的边界框坐标。
最后,我们将DETR的输出结果和目标数据分别存储在`outputs`字典和`targets`列表中,以便传递给HungarianMatcher函数进行匹配。请注意,这只是一个示例,实际应用中的数据格式可能会有所不同,具体取决于你的任务和数据集。
阅读全文