融入注意力机制的TCN网络结构代码
时间: 2024-03-13 16:41:21 浏览: 156
融入注意力机制的TCN(Temporal Convolutional Network)结构代码如下所示:
```python
import torch
import torch.nn as nn
class Attention(nn.Module):
def __init__(self, input_size, hidden_size):
super(Attention, self).__init__()
self.input_size = input_size
self.hidden_size = hidden_size
self.attention_weights = nn.Linear(input_size, hidden_size)
self.attention_activation = nn.Tanh()
self.attention_weights2 = nn.Linear(hidden_size, 1)
self.softmax = nn.Softmax(dim=1)
def forward(self, inputs):
attention_scores = self.attention_activation(self.attention_weights(inputs))
attention_weights = self.attention_weights2(attention_scores)
attention_weights = self.softmax(attention_weights)
weighted_inputs = inputs * attention_weights
output = torch.sum(weighted_inputs, dim=1)
return output
class TCN(nn.Module):
def __init__(self, input_size, output_size, num_channels, kernel_size, dropout):
super(TCN, self).__init__()
self.input_size = input_size
self.output_size = output_size
self.num_channels = num_channels
self.kernel_size = kernel_size
self.dropout = dropout
self.tcn_layers = nn.ModuleList()
for i, num_channel in enumerate(num_channels):
dilation_size = 2 ** i
tcn_layer = nn.Sequential(
nn.Conv1d(input_size, num_channel, kernel_size, dilation=dilation_size),
nn.BatchNorm1d(num_channel),
nn.ReLU(),
nn.Dropout(dropout)
)
self.tcn_layers.append(tcn_layer)
input_size = num_channel
self.attention = Attention(sum(num_channels), sum(num_channels) // 2)
self.fc = nn.Linear(sum(num_channels), output_size)
def forward(self, inputs):
inputs = inputs.permute(0, 2, 1)
outputs = inputs
for tcn_layer in self.tcn_layers:
outputs = tcn_layer(outputs)
outputs = outputs.permute(0, 2, 1)
attention_output = self.attention(outputs)
output = self.fc(attention_output)
return output
```
这段代码实现了一个融入注意力机制的TCN网络结构。其中,Attention模块用于计算输入序列的注意力权重,TCN模块通过多个卷积层和注意力层来提取特征并进行预测。你可以根据需要调整网络的输入大小、输出大小、通道数、卷积核大小和dropout率等参数。
阅读全文