Python数据可视化清洗
时间: 2024-06-18 11:01:38 浏览: 183
Python数据可视化课后习题_答案.docx
Python数据可视化和清洗是数据分析的重要步骤。首先,我们来简要了解一下这两部分:
**数据清洗(Data Cleaning)**:
1. **缺失值处理**: 使用pandas库中的`dropna()`、`fillna()`等方法处理缺失值,可以选择删除、填充平均值、中位数或特定值。
2. **异常值检测**: 通过统计方法(如Z-score, IQR)或可视化工具(如箱线图)识别并处理异常值。
3. **重复值检查**: 使用`duplicated()`和`drop_duplicates()`去除重复行。
4. **类型转换**: 根据需求将数据类型转换为正确的格式,比如将字符串转为日期、数值等。
5. **数据标准化或归一化**: 如果数值特征范围差异大,可能需要进行标准化(如z-score)或归一化(如min-max)。
**数据可视化(Data Visualization)**:
1. **使用matplotlib**: 创建各种图表,如折线图、散点图、柱状图、饼图等,展示数据分布和趋势。
2. **Seaborn**: 更高级的统计图形库,提供更丰富的样式和更复杂的数据可视化,如热力图、小提琴图等。
3. **Plotly**: 可创建交互式图表,适合网络或报告展示。
4. **Matplotlib.pyplot子图**: 处理多个图表在同一画布上展示,便于比较分析。
阅读全文