空调参与经济调度的python代码
时间: 2024-11-24 17:42:33 浏览: 4
HFSP_GA.zip
5星 · 资源好评率100%
空调参与经济调度通常涉及到电力系统管理中的优化算法,通过Python编写可以实现自动调整运行状态以节省能源。下面是一个简单的例子,展示如何使用Python模拟空调的温度控制和经济调度:
```python
import numpy as np
class AirConditioner:
def __init__(self, set_point=24, min_temp=18, max_temp=26):
self.set_point = set_point
self.min_temp = min_temp
self.max_temp = max_temp
self.current_temp = set_point
self.power_consumption = 0
def adjust_temperature(self, target_temp):
if target_temp > self.max_temp or target_temp < self.min_temp:
return "Target temperature out of range."
else:
self.current_temp = target_temp
new_power = (target_temp - self.set_point) * 10 # 这里只是一个简化示例,实际功率计算可能更复杂
self.power_consumption += new_power
return f"Adjusted to {target_temp} with power consumption: {new_power}"
# 经济调度示例
def economic_scheduling(airconds, current_price, target_hours=8):
total_cost = 0
for ac in airconds:
for _ in range(target_hours):
temp_change = np.random.uniform(-1, 1) # 模拟随机温度变化
ac.adjust_temperature(ac.current_temp + temp_change)
total_cost += ac.power_consumption * current_price / 100 # 将电价转换为每度成本
return total_cost, [ac.current_temp for ac in airconds]
# 使用示例
ac1 = AirConditioner()
ac2 = AirConditioner()
price_now = 0.5 # 单价示例
total_cost, temperatures = economic_scheduling([ac1, ac2], price_now)
print(f"Total cost: {total_cost}")
print("Final temperatures:", temperatures)
阅读全文