notebook如何将数据拆分为训练集和测试集,用于模型训练和评估。拆分比例为 90% 训练集和 10% 测试集的比例划分随机数种子固定设置为 42
时间: 2024-10-14 07:14:37 浏览: 58
在Jupyter Notebook中,可以使用sklearn库中的train_test_split函数来将数据拆分成训练集和测试集。以下是一个示例:
```python
from sklearn.model_selection import train_test_split
import numpy as np
# 假设你的数据已经存储在data变量中,如果是Pandas DataFrame,可能是df
# 或者是numpy数组,如X_data (特征) 和y_data (目标)
# 假设X_data = data[特征列],y_data = data['目标列']
# 将数据划分为特征和标签
X = X_data
y = y_data
# 设置随机数生成器的种子,这样每次运行结果都是一样的,便于复现
np.random.seed(42)
# 划分训练集和测试集,test_size=0.1表示10%的数据作为测试集,剩下的作为训练集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.1, random_state=42)
# 现在,X_train和y_train用于训练模型,而X_test和y_test用于模型评估
```
这里设置了`random_state=42`,这意味着无论何时运行这个代码片段,它都将产生相同的随机分割,这有助于保持实验的可重复性。
相关问题
jupyter+notebook识别图片数据集
Jupyter Notebook是一个交互式的开发环境,可以用于编写和运行代码,并且可以在代码中插入文本、图像和其他媒体。它非常适合用于数据分析和机器学习任务。
要在Jupyter Notebook中识别图片数据集,你可以使用各种机器学习算法和库来训练模型。以下是一个示例,演示了如何使用Jupyter Notebook和Scikit-learn库来训练一个基于KNN算法的手写数字识别模型:
1. 导入所需的库和模块:
```python
import numpy as np
import matplotlib.pyplot as plt
from sklearn.datasets import load_digits
from sklearn.model_selection import train_test_split
from sklearn.neighbors import KNeighborsClassifier
```
2. 加载手写数字数据集:
```python
digits = load_digits()
X = digits.data
y = digits.target
```
3. 将数据集拆分为训练集和测试集:
```python
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
```
4. 创建并训练KNN分类器:
```python
knn = KNeighborsClassifier(n_neighbors=3)
knn.fit(X_train, y_train)
```
5. 使用训练好的模型进行预测:
```python
y_pred = knn.predict(X_test)
```
6. 可以使用一些评估指标来评估模型的性能,例如准确率:
```python
accuracy = knn.score(X_test, y_test)
print("Accuracy:", accuracy)
```
通过执行以上步骤,你可以在Jupyter Notebook中训练和测试一个手写数字识别模型,并获得其准确率。
用jupyter编写一个训练fer2013的数据集的模型训练代码
好的,以下是基于PyTorch和Jupyter Notebook的FER2013数据集训练模型的代码。
首先需要安装相关的库和下载FER2013数据集:
```python
!pip install torch torchvision matplotlib
!wget https://drive.google.com/uc?id=1LZ8WxQ5QXkwr1fJinHvZCRlV8k9zFeQv -O fer2013.csv
```
然后将下载的CSV文件读取为Pandas DataFrame,并将数据集拆分为训练、验证和测试集:
```python
import pandas as pd
import numpy as np
data = pd.read_csv('fer2013.csv')
# 将像素值转换为numpy数组
pixels = data['pixels'].tolist()
faces = []
for pixel_sequence in pixels:
face = [int(pixel) for pixel in pixel_sequence.split(' ')]
face = np.asarray(face).reshape(48, 48)
faces.append(face.astype('float32'))
faces = np.asarray(faces)
emotions = pd.get_dummies(data['emotion']).to_numpy()
# 将数据集拆分为训练、验证和测试集
train_faces = faces[:28000]
val_faces = faces[28000:30000]
test_faces = faces[30000:]
train_emotions = emotions[:28000]
val_emotions = emotions[28000:30000]
test_emotions = emotions[30000:]
```
接下来,我们使用PyTorch构建卷积神经网络模型,并定义损失函数和优化器:
```python
import torch
import torch.nn as nn
import torch.optim as optim
class Net(nn.Module):
def __init__(self):
super(Net, self).__init__()
self.conv1 = nn.Conv2d(1, 64, kernel_size=5, stride=1, padding=2)
self.conv2 = nn.Conv2d(64, 64, kernel_size=5, stride=1, padding=2)
self.conv3 = nn.Conv2d(64, 128, kernel_size=5, stride=1, padding=2)
self.fc1 = nn.Linear(12*12*128, 3072)
self.fc2 = nn.Linear(3072, 6)
self.pool = nn.MaxPool2d(kernel_size=2, stride=2)
self.dropout = nn.Dropout(p=0.5)
self.bn1 = nn.BatchNorm2d(64)
self.bn2 = nn.BatchNorm2d(128)
def forward(self, x):
x = self.conv1(x)
x = self.bn1(x)
x = nn.functional.relu(x)
x = self.pool(x)
x = self.conv2(x)
x = self.bn1(x)
x = nn.functional.relu(x)
x = self.pool(x)
x = self.conv3(x)
x = self.bn2(x)
x = nn.functional.relu(x)
x = self.pool(x)
x = x.view(-1, 12*12*128)
x = self.dropout(x)
x = self.fc1(x)
x = nn.functional.relu(x)
x = self.dropout(x)
x = self.fc2(x)
return x
net = Net()
criterion = nn.CrossEntropyLoss()
optimizer = optim.Adam(net.parameters(), lr=0.001)
```
定义好模型后,我们可以开始训练模型。在训练过程中,我们需要将数据转换为PyTorch张量,并将模型和损失函数移动到GPU上(如果有的话):
```python
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
net.to(device)
train_faces_tensor = torch.from_numpy(train_faces).unsqueeze(1).to(device)
train_emotions_tensor = torch.from_numpy(np.argmax(train_emotions, axis=1)).to(device)
val_faces_tensor = torch.from_numpy(val_faces).unsqueeze(1).to(device)
val_emotions_tensor = torch.from_numpy(np.argmax(val_emotions, axis=1)).to(device)
test_faces_tensor = torch.from_numpy(test_faces).unsqueeze(1).to(device)
test_emotions_tensor = torch.from_numpy(np.argmax(test_emotions, axis=1)).to(device)
for epoch in range(100):
running_loss = 0.0
for i in range(0, train_faces_tensor.shape[0], 64):
inputs = train_faces_tensor[i:i+64]
labels = train_emotions_tensor[i:i+64]
optimizer.zero_grad()
outputs = net(inputs)
loss = criterion(outputs, labels)
loss.backward()
optimizer.step()
running_loss += loss.item()
print(f"Epoch {epoch+1} loss: {running_loss / train_faces_tensor.shape[0]}")
```
训练完成后,我们可以使用测试集来评估模型的性能:
```python
correct = 0
total = 0
with torch.no_grad():
for i in range(0, test_faces_tensor.shape[0], 64):
inputs = test_faces_tensor[i:i+64]
labels = test_emotions_tensor[i:i+64]
outputs = net(inputs)
_, predicted = torch.max(outputs.data, 1)
total += labels.size(0)
correct += (predicted == labels).sum().item()
print(f"Accuracy: {correct / total}")
```
以上就是基于PyTorch和Jupyter Notebook的FER2013数据集训练模型的代码,希望对您有所帮助!
阅读全文