怎么在EfficientNetV2网络中添加EMA模块
时间: 2024-06-14 12:05:04 浏览: 165
在EfficientNetV2网络中添加EMA模块的具体步骤如下:
1. 首先,打开yolov5s_EMA.yaml文件,并找到你想要添加EMA模块的位置。
2. 在Neck端添加EMA模块的示例代码如下:
```python
import torch
import torch.nn as nn
class EMA(nn.Module):
def __init__(self, in_channels, reduction_ratio=16):
super(EMA, self).__init__()
self.avg_pool = nn.AdaptiveAvgPool2d(1)
self.fc = nn.Sequential(
nn.Linear(in_channels, in_channels // reduction_ratio),
nn.ReLU(inplace=True),
nn.Linear(in_channels // reduction_ratio, in_channels),
nn.Sigmoid()
)
def forward(self, x):
b, c, _, _ = x.size()
y = self.avg_pool(x).view(b, c)
y = self.fc(y).view(b, c, 1, 1)
return x * y
# 在Neck端添加EMA模块
class Neck(nn.Module):
def __init__(self, in_channels, out_channels):
super(Neck, self).__init__()
self.conv = nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=1, padding=1)
self.ema = EMA(out_channels)
def forward(self, x):
x = self.conv(x)
x = self.ema(x)
return x
```
3. 在common.py文件中添加C3_EMA模块的示例代码如下:
```python
import torch
import torch.nn as nn
class C3_EMA(nn.Module):
def __init__(self, in_channels, out_channels):
super(C3_EMA, self).__init__()
self.conv1 = nn.Conv2d(in_channels, out_channels, kernel_size=1, stride=1, padding=0)
self.conv2 = nn.Conv2d(out_channels, out_channels, kernel_size=3, stride=1, padding=1)
self.conv3 = nn.Conv2d(out_channels, out_channels, kernel_size=1, stride=1, padding=0)
self.ema = EMA(out_channels)
def forward(self, x):
x = self.conv1(x)
x = self.conv2(x)
x = self.conv3(x)
x = self.ema(x)
return x
```
以上是在EfficientNetV2网络中添加EMA模块的示例代码。你可以根据自己的需求进行修改和调整。
阅读全文
相关推荐
![-](https://img-home.csdnimg.cn/images/20241231044955.png)
![-](https://img-home.csdnimg.cn/images/20241231045053.png)
![-](https://img-home.csdnimg.cn/images/20241231044955.png)
![zip](https://img-home.csdnimg.cn/images/20241231045053.png)
![zip](https://img-home.csdnimg.cn/images/20241231045053.png)
![zip](https://img-home.csdnimg.cn/images/20241231045053.png)
![rar](https://img-home.csdnimg.cn/images/20241231044955.png)
![zip](https://img-home.csdnimg.cn/images/20241231045053.png)
![zip](https://img-home.csdnimg.cn/images/20241231045053.png)
![rar](https://img-home.csdnimg.cn/images/20241231044955.png)
![rar](https://img-home.csdnimg.cn/images/20241231044955.png)
![pdf](https://img-home.csdnimg.cn/images/20241231044930.png)
![application/x-rar](https://img-home.csdnimg.cn/images/20210720083606.png)
![pdf](https://img-home.csdnimg.cn/images/20241231044930.png)
![zip](https://img-home.csdnimg.cn/images/20241231045053.png)
![.zip](https://img-home.csdnimg.cn/images/20241231045053.png)