Transformer与LSTM相结合
时间: 2023-12-12 13:36:00 浏览: 134
Transformer与LSTM相结合可以用于跨话语信息表示,即在对话系统中,将多个话语的信息结合起来进行处理。具体实现方法是在每个Transformer block前分别建立一个LSTM,将前面所有话语的信息进行编码,然后将编码结果与当前话语的Transformer block输入进行拼接,再进行后续的处理。这样可以使得模型更好地捕捉到跨话语的信息,提高对话系统的效果。
下面是一个简单的示例代码,其中包含了一个LSTM和一个Transformer block:
```python
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.nn.utils.rnn import pack_padded_sequence, pad_packed_sequence
class TransformerLSTM(nn.Module):
def __init__(self, input_dim, hidden_dim, num_layers, num_heads):
super(TransformerLSTM, self).__init__()
self.lstm = nn.LSTM(input_dim, hidden_dim, num_layers, batch_first=True)
self.transformer = nn.TransformerEncoderLayer(hidden_dim, num_heads)
def forward(self, x, lengths):
# 对输入进行pack,以便LSTM处理变长序列
packed = pack_padded_sequence(x, lengths, batch_first=True, enforce_sorted=False)
# LSTM编码
lstm_out, _ = self.lstm(packed)
# 对LSTM输出进行unpack
lstm_out, _ = pad_packed_sequence(lstm_out, batch_first=True)
# Transformer输入需要为(batch_size, seq_len, hidden_dim)
transformer_in = lstm_out.unsqueeze(1)
# Transformer编码
transformer_out = self.transformer(transformer_in)
# 将Transformer输出进行拼接
out = torch.cat([lstm_out, transformer_out.squeeze(1)], dim=-1)
return out
```
阅读全文