这道题的正确代码是什么
时间: 2024-09-14 12:14:15 浏览: 33
由于您没有提供具体的编程语言和题目细节,我无法直接给出完整的代码。但我会给您一个通用的Python代码模板,您可以根据实际情况调整:
```python
def find_min_area_with_k_seats(m, n, occupied_seats, target_seats):
# 创建一个二维数组来存储剩余座位信息
seats = [[0] * (m + 1) for _ in range(n + 1)]
# 更新座位矩阵,0表示有座位,非0表示无座位
for row, col in occupied_seats:
seats[row][col] = -1
# 动态规划:dp[i][j] 表示以 (i, j) 为左上角的矩形区域最多容纳多少人
dp = [[0] * (m + 1) for _ in range(n + 1)]
max_seats = 0
min_area = float('inf')
# 使用深度优先搜索查找符合条件的最小面积
def dfs(i, j, seat_count):
nonlocal max_seats, min_area
if i > n or j > m or seat_count <= 0:
return
if seats[i][j] == 0 and seat_count >= target_seats:
max_seats = max(max_seats, seat_count)
area = (i - start_i + 1) * (j - start_j + 1)
min_area = min(min_area, area)
if seats[i][j] != -1:
dp[i][j] = dp[i - 1][j] + dp[i][j - 1]
else:
dp[i][j] = dp[i - 1][j] + dp[i][j - 1] + seats[i][j]
dfs(i + 1, j, seat_count - dp[i][j])
dfs(i, j + 1, seat_count - dp[i][j])
# 从每一个位置开始搜索
for i in range(1, n + 1):
for j in range(1, m + 1):
dfs(i, j, target_seats)
# 返回结果
return max_seats, min_area
# 测试数据
m = 5
n = 6
occupied_seats = [(1, 2), (3, 4)] # 已占用座位
target_seats = 4 # 目标空座数量
result = find_min_area_with_k_seats(m, n, occupied_seats, target_seats)
print("最大容纳座位数:", result[0], "最小面积:", result[1])
阅读全文