树的深度优先遍历python
时间: 2023-12-14 20:35:06 浏览: 78
以下是树的深度优先遍历的Python代码示例:
```python
class TreeNode:
def __init__(self, val=0, left=None, right=None):
self.val = val
self.left = left
self.right = right
class Solution:
def dfs(self, node: TreeNode, depth: int) -> int:
if not node:
return depth
left_depth = self.dfs.left, depth + 1)
right_depth = self.dfs(node.right, depth + 1)
return max(left_depth, right_depth)
def maxDepth(self, root: Optional[TreeNode]) -> int:
return self.dfs(root, 0)
```
其中,`TreeNode`类表示树的节点,`Solution`类中的`dfs`方法是递归实现的深度优先遍历,`maxDepth`方法是调用`dfs`方法并返回最大深度。
相关问题
图的深度优先遍历python
以下是Python中图的深度优先遍历的实现方法:
```python
# 定义一个图类
class Graph:
def __init__(self, graph_dict=None):
if graph_dict is None:
graph_dict = {}
self.__graph_dict = graph_dict
# 添加节点
def add_node(self, node):
if node not in self.__graph_dict:
self.__graph_dict[node] = []
# 添加边
def add_edge(self, edge):
edge = set(edge)
(node1, node2) = tuple(edge)
if node1 in self.__graph_dict:
self.__graph_dict[node1].append(node2)
else:
self.__graph_dict[node1] = [node2]
# 深度优先遍历
def dfs(self, start, visited=None):
if visited is None:
visited = set()
visited.add(start)
print(start)
for next_node in self.__graph_dict[start]:
if next_node not in visited:
self.dfs(next_node, visited)
# 创建一个图实例
graph = Graph()
# 添加节点
graph.add_node('A')
graph.add_node('B')
graph.add_node('C')
graph.add_node('D')
graph.add_node('E')
# 添加边
graph.add_edge(('A', 'B'))
graph.add_edge(('B', 'C'))
graph.add_edge(('C', 'D'))
graph.add_edge(('D', 'E'))
graph.add_edge(('E', 'A'))
# 深度优先遍历
graph.dfs('A')
```
输出结果为:
```
A
B
C
D
E
```
有向图的深度优先遍历python
有向图的深度优先遍历(Depth First Search, DFS)是一种用于遍历图的算法。它从图中的一个顶点开始,沿着一条路径尽可能深地访问图中的顶点,直到无法继续前进为止,然后回溯到前一个顶点,继续探索其他路径。以下是一个用Python实现有向图深度优先遍历的示例代码:
```python
# 定义有向图类
class DirectedGraph:
def __init__(self):
self.graph = {}
# 添加边
def add_edge(self, start, end):
if start in self.graph:
self.graph[start].append(end)
else:
self.graph[start] = [end]
# 深度优先遍历
def dfs(self, start):
visited = set() # 记录已访问的节点
def dfs_helper(node):
visited.add(node)
print(node, end=" ") # 输出节点值
if node in self.graph:
for neighbor in self.graph[node]:
if neighbor not in visited:
dfs_helper(neighbor)
dfs_helper(start)
# 创建有向图对象
graph = DirectedGraph()
# 添加边
graph.add_edge('A', 'B')
graph.add_edge('A', 'C')
graph.add_edge('B', 'D')
graph.add_edge('B', 'E')
graph.add_edge('C', 'F')
# 深度优先遍历
print("深度优先遍历结果:")
graph.dfs('A')
```
运行以上代码,输出结果为:A B D E C F
阅读全文