写一个用ResNet构建一个图片识别狗高兴伤心生气放松四种类型的模型并训练的代码
时间: 2024-11-09 08:30:06 浏览: 15
在Python中,特别是在深度学习框架如PyTorch中,我们可以使用ResNet(Residual Network)结构创建一个用于识别狗狗情绪的图像分类模型。这里是一个简化的例子,展示如何使用预训练的ResNet模型作为基础,并对其进行微调。请注意,这只是一个高层次的概念,实际代码需要安装必要的库和导入相关的模块。
```python
import torch
from torchvision import models, datasets, transforms
from torch import nn
from PIL import Image
# 定义情感类别
classes = ['happy', 'sad', 'angry', 'relaxed']
# 数据预处理
transform_train = transforms.Compose([
transforms.RandomResizedCrop(224),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
])
transform_test = transforms.Compose([
transforms.Resize(256),
transforms.CenterCrop(224),
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
])
# 加载预训练的ResNet模型(例如ResNet18)
model = models.resnet18(pretrained=True)
num_features = model.fc.in_features
model.fc = nn.Linear(num_features, len(classes)) # 修改最后一层为分类层
# 损失函数和优化器
criterion = nn.CrossEntropyLoss()
optimizer = torch.optim.Adam(model.parameters(), lr=0.001)
# 数据加载
train_dataset = datasets.ImageFolder('path_to_train_data', transform_train)
test_dataset = datasets.ImageFolder('path_to_test_data', transform_test)
data_loader = torch.utils.data.DataLoader(train_dataset, batch_size=32, shuffle=True)
# 训练模型
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model.to(device)
for epoch in range(epochs): # 这里假设你想训练多个epoch
for inputs, labels in data_loader:
inputs, labels = inputs.to(device), labels.to(device)
optimizer.zero_grad()
outputs = model(inputs)
loss = criterion(outputs, labels)
loss.backward()
optimizer.step()
# 打印训练信息和评估
train_loss(loss.item())
evaluate_model(test_dataset)
# 函数定义
def train_loss(loss):
print(f"Epoch [{epoch+1}/{epochs}], Loss: {loss:.4f}")
def evaluate_model(dataset):
model.eval()
total_correct = 0
with torch.no_grad():
for images, labels in dataset:
images, labels = images.to(device), labels.to(device)
outputs = model(images)
_, predicted = torch.max(outputs.data, 1)
total_correct += (predicted == labels).sum().item()
accuracy = total_correct / len(dataset)
print(f"Accuracy on test set: {accuracy * 100:.2f}%")
```
注意:
1. 将上述代码中的`'path_to_train_data'`和`'path_to_test_data'`替换为实际数据集路径。
2. `epochs`是训练轮数,可以根据需要调整。
3. 此代码没有包含验证阶段,如果需要,可以在训练过程中加入验证数据集进行评估。
4. 在运行此代码之前,确保已经安装了torchvision库和其他依赖项。
阅读全文