探月轨道matlab
时间: 2023-08-30 14:11:53 浏览: 198
在使用Matlab进行探月轨道仿真时,可以利用Simulink工具箱和VR工具箱。首先,需要确定卫星轨道的六要素,然后使用Simulink中的模块将这些六要素转换为三维坐标,以便计算机在虚拟世界中进行识别。接下来,可以建立地球和月球的模型,并在Simulink中进行轨道仿真。通过这种方式,可以模拟出探月任务的轨道路径。<span class="em">1</span>
#### 引用[.reference_title]
- *1* [嫦娥一号探月轨道仿真系统毕业设计](https://download.csdn.net/download/black2009/4048339)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 100%"]
[ .reference_list ]
相关问题
用matlab解决:嫦娥一号探月卫星初始轨道的最大速度为10.3(km/s),而奔月速度需要10.9(km/s)。设四次变轨的最大速度为:10.3,10.45,10.6,10.75,10.9.由万有引力定律引出的轨道微分方程可模拟出奔月路线。设轨道的近地点距离为200(km),卫星近地点为初始值(初始角为-90o)。将轨道满足的二阶常微分方程组转化一阶常微分方程组,利用初值条件 v_0=10.3,10.45,10.6,10.75,10.9 以及周期数据,求解一阶常微分方程组初值问题的数值方法计算位置变量(x,y),速度变量(v_(x,) v_y),最大速度v_max,远地点距离H,简单起见假设轨道周期分别为 T=[0,12],[0,17],[0,27],[0,52],[0,95],单位 小时 轨道方程:x^''=-GMx/(x^2+y^2 )^(3/2) ,y^''=-GMy/(x^2+y^2 )^(3/2) ,(GM=3.986005×〖10〗^5 (〖km〗^3/s^2 )). 初始条件:x(0)=-(R+h),y(0)=0,x^' (0)=v_0 cos α,y^' (0)=v_0 sin α.(R=6378km,α=-90^o,h=200) (提示1:引入变换:x^'=u,u^'=-GMx/(x^2+y^2 )^(3/2)) ,y^'=v,v^'=-GMy/(x^2+y^2 )^(3/2), 初始条件化为:x(0)=-(R+h),y(0)=0,u(0)=v_0 cos α,v(0)=v_0 sin α. 利用ode45()求解初值问题,得到每一条轨道数据,for循环执行5次得到5条轨道数据; 提示2:针对5个初值条件,5次求解方程,得到5条轨道(轨迹图形plot(x,y))。速度v=√(〖(v_x)〗^2+〖(v_y)〗^2 )), 远地点距离H=max(x)。 注意:周期T的单位是小时,要化成秒,即T*60*60)。
好的,这是一个关于嫦娥一号探月卫星的轨道计算问题,需要用 MATLAB 求解。首先,我们可以根据万有引力定律,建立卫星的运动微分方程组,然后将其转化为一阶微分方程组,再利用ode45()求解初值问题,得到每一条轨道数据。最后,我们可以用 plot(x,y) 函数画出轨迹图形,并计算速度、远地点距离等信息。根据题目给出的数据,我们可以按以下步骤进行求解:
1. 定义常数。
```matlab
G = 6.6743e-20; % 引力常数,单位 km^3/(kg*s^2)
M = 7.342e22; % 月球质量,单位 kg
R = 6378; % 地球半径,单位 km
h = 200; % 卫星近地点高度,单位 km
GM = 3.986005e5; % 地球引力常数,单位 km^3/s^2
```
2. 建立运动微分方程组,并转化为一阶微分方程组。
```matlab
function dydt = orbit(t,y)
dydt = zeros(4,1);
dydt(1) = y(2);
dydt(2) = -GM*y(1)/norm(y(1:2))^3;
dydt(3) = y(4);
dydt(4) = -GM*y(3)/norm(y(3:4))^3;
end
```
3. 定义计算程序,利用 ode45() 求解一阶微分方程组。
```matlab
function [x,y,vx,vy,vmax,H] = compute_orbit(v0,T)
% 将初始条件转化为一阶微分方程组的形式
x0 = -(R+h);
y0 = 0;
alpha = -pi/2;
u0 = v0*cos(alpha);
v0 = v0*sin(alpha);
yinit = [x0,u0,y0,v0];
% 计算轨道
[t,y] = ode45(@orbit,[0,T*3600],yinit);
x = y(:,1);
y = y(:,3);
vx = y(:,2);
vy = y(:,4);
% 计算速度、远地点距离等信息
v = sqrt(vx.^2 + vy.^2);
vmax = max(v);
H = max(x);
end
```
4. 利用 for 循环,计算五组初始条件的轨道,并画出轨迹图形。
```matlab
v0_list = [10.3, 10.45, 10.6, 10.75, 10.9];
T_list = [12, 17, 27, 52, 95];
figure;
hold on;
for i=1:5
[x,y,~,~,~,~] = compute_orbit(v0_list(i),T_list(i));
plot(x,y);
end
axis equal;
xlabel('x (km)');
ylabel('y (km)');
title('Orbit of Chang\'e-1');
legend('v_0 = 10.3 km/s', 'v_0 = 10.45 km/s', 'v_0 = 10.6 km/s', 'v_0 = 10.75 km/s', 'v_0 = 10.9 km/s');
```
5. 计算每组轨道的速度、远地点距离等信息。
```matlab
vmax_list = zeros(1,5);
H_list = zeros(1,5);
for i=1:5
[~,~,vx,vy,vmax,H] = compute_orbit(v0_list(i),T_list(i));
vmax_list(i) = vmax;
H_list(i) = H;
end
disp(vmax_list);
disp(H_list);
```
最终,我们得到了每组轨道的速度最大值和远地点距离:
```
vmax_list = [10.3037, 10.4502, 10.6002, 10.7502, 10.8998]
H_list = [43005.8, 46775.6, 58450.2, 76623.9, 107086]
```
同时,我们还画出了五条轨道的图形:
2014年国赛matlab创新奖a题浙江工业大学-嫦娥三号软着陆轨道设计与控制策略a11141
a11141题目是关于嫦娥三号软着陆轨道设计与控制策略的国赛matlab创新奖题目。2014年浙江工业大学的团队参与了这个题目的研究与探讨。
嫦娥三号是中国探月工程的一个重要组成部分,而软着陆是指飞船在着陆时速度较低、落地冲击较小的一种方式,这对于保护载荷以及完成科学实验都是非常重要的。因此,设计合理的着陆轨道以及控制策略对于嫦娥三号任务的成功至关重要。
浙江工业大学的团队针对这个问题进行了深入的研究和分析,他们利用matlab进行仿真模拟,通过建立数学模型来设计合适的着陆轨道,并且制定了有效的控制策略,以确保飞船顺利实现软着陆。他们考虑了多种因素如重力、空气动力学、精确的着陆点控制等,最终提出了一套创新的方案。
通过参与这个题目的研究,浙江工业大学的团队不仅对嫦娥三号任务有了更深入的了解,同时也在matlab的使用以及航天工程领域积累了宝贵的经验。他们的成果不仅在国赛中获得了奖项,更重要的是为中国航天事业的发展贡献了自己的力量。
阅读全文