vitae高光谱图像分类
时间: 2023-12-23 13:26:24 浏览: 123
Vitae Transformer是一种新型的Transformer模型,它在高光谱图像分类任务中表现出色。下面是使用Vitae Transformer进行高光谱图像分类的步骤:
1. 准备数据集:将高光谱图像数据集划分为训练集和测试集,并将其转换为模型可接受的格式。
2. 定义模型:使用PyTorch实现Vitae Transformer模型,并根据数据集的特点进行相应的调整。
```python
import torch
import torch.nn as nn
from transformers import ViTaeTransformer
class ViTaeClassifier(nn.Module):
def __init__(self, num_classes):
super(ViTaeClassifier, self).__init__()
self.transformer = ViTaeTransformer()
self.fc = nn.Linear(self.transformer.config.hidden_size, num_classes)
def forward(self, x):
x = self.transformer(x)
x = self.fc(x.pooler_output)
return x
```
3. 训练模型:使用训练集对模型进行训练,并在验证集上进行验证,以确定最佳的超参数和模型结构。
```python
import torch.optim as optim
from torch.utils.data import DataLoader
from sklearn.metrics import accuracy_score
# 定义超参数
lr = 1e-4
batch_size = 32
num_epochs = 10
# 准备数据集
train_dataset = ...
test_dataset = ...
train_loader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True)
test_loader = DataLoader(test_dataset, batch_size=batch_size, shuffle=False)
# 定义模型和优化器
model = ViTaeClassifier(num_classes=10)
optimizer = optim.Adam(model.parameters(), lr=lr)
# 训练模型
for epoch in range(num_epochs):
model.train()
for batch_idx, (data, target) in enumerate(train_loader):
optimizer.zero_grad()
output = model(data)
loss = nn.CrossEntropyLoss()(output, target)
loss.backward()
optimizer.step()
model.eval()
with torch.no_grad():
test_acc = []
for data, target in test_loader:
output = model(data)
pred = output.argmax(dim=1)
acc = accuracy_score(pred.cpu().numpy(), target.cpu().numpy())
test_acc.append(acc)
print('Epoch: {}, Test Accuracy: {:.2f}%'.format(epoch, 100 * sum(test_acc) / len(test_acc)))
```
4. 测试模型:使用测试集对模型进行测试,并计算模型的准确率。
```python
model.eval()
with torch.no_grad():
test_acc = []
for data, target in test_loader:
output = model(data)
pred = output.argmax(dim=1)
acc = accuracy_score(pred.cpu().numpy(), target.cpu().numpy())
test_acc.append(acc)
print('Test Accuracy: {:.2f}%'.format(100 * sum(test_acc) / len(test_acc)))
```
阅读全文