super(Dice, self).__init__()后怎么定义device
时间: 2024-05-16 18:18:00 浏览: 135
在调用 `super(Dice, self).__init__()` 时,`self` 对象已经被创建。我们可以在这之后来定义 `device`。例如:
```python
class Dice(nn.Module):
def __init__(self, num_embeddings, embedding_dim, padding_idx=None):
super(Dice, self).__init__()
self.num_embeddings = num_embeddings
self.embedding_dim = embedding_dim
self.padding_idx = padding_idx
self.embedding = nn.Embedding(num_embeddings, embedding_dim, padding_idx=self.padding_idx)
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
```
在这个例子中,我们在 `__init__` 方法中定义了 `device`。它使用了 `torch.device` 函数来判断当前是否可以使用 GPU,如果可以则选择 GPU,否则选择 CPU。
相关问题
pytorch实现多分类dice损失
您好,关于您的问题,我可以回答。PyTorch实现多分类Dice损失的方法如下:
1.首先导入必要的模块和库
```python
import torch
import torch.nn as nn
import torch.nn.functional as F
```
2.定义Dice函数用于计算Dice系数
```python
def dice_loss(y_pred, y_true, smooth=1.):
y_pred = y_pred.argmax(dim=1)
y_true = y_true.argmax(dim=1)
intersection = torch.sum(y_pred * y_true)
dice = (2. * intersection + smooth) / (torch.sum(y_pred) + torch.sum(y_true) + smooth)
return 1. - dice
```
3.定义多分类Dice损失函数
```python
class DiceLoss(nn.Module):
def __init__(self):
super(DiceLoss, self).__init__()
def forward(self, y_pred, y_true):
return dice_loss(F.softmax(y_pred, dim=1), F.one_hot(y_true, num_classes=y_pred.size()[-1]))
```
4.在训练过程中调用DiceLoss函数即可
```python
criterion = DiceLoss()
optimizer = torch.optim.Adam(model.parameters(), lr=0.001)
for epoch in range(num_epochs):
for i, (images, labels) in enumerate(train_loader):
images = images.to(device)
labels = labels.to(device)
optimizer.zero_grad()
outputs = model(images)
loss = criterion(outputs, labels)
loss.backward()
optimizer.step()
if (i+1) % 100 == 0:
print(f'EPOCH: [{epoch+1}/{num_epochs}], STEP: [{i+1}/{total_steps}], LOSS: {loss.item():.4f}')
```
希望能够回答到您的问题。如果您有其他问题,欢迎继续提问。
阅读全文
相关推荐








