用五点菱形格式求解下列椭圆型方程的边值问题。 -((fracu)^2/(fracx)^2+(fracu)^2/(fracy)^2=(4y^2-2x^2)/(x^2+2y^2)^2,1<x<2,0<y<3 u(1,y)=ln(1+2y^2),u(2,y)=ln(4+2y^2) 0<=y<=1 u(x,0)=2lnx,u(x,3)=ln(18+x^2),1<x<2 已知此问题的精确解为u(x,y)=ln(x^+2y^2),分别取第一种剖分数m=20,n=30和第二种剖分数m=40,n=60,输出10个节点(1.25,0.5i),(1.75,0.5i),i=1,2,3,4,5处的数值解,并给出误差, 要求在各节点处最大误差的迭代误差限为0.5*10^(-10). 请给出具体的matlab程序代码
时间: 2024-02-23 20:59:39 浏览: 150
peEllip5.rar_matlab五点差分_五点差分格式_拉普拉斯方程_求边值问题
5星 · 资源好评率100%
这是一个偏微分方程的求解问题,可以使用MATLAB的偏微分方程求解工具箱来求解。以下是基本的MATLAB程序代码:
```matlab
% 定义方程和边界条件
f = @(x, y, u) -(diff(u, 2, 1)./x.^2 + diff(u, 2, 2)./y.^2) - (4*y.^2 - 2*x.^2)./(x.^2 + 2*y.^2).^2;
u1 = @(y) log(1 + 2*y.^2);
u2 = @(y) log(4 + 2*y.^2);
u3 = @(x) 2*log(x);
u4 = @(x) log(18 + x.^2);
bc1 = @(y) log(1 + 2*y.^2);
bc2 = @(y) log(4 + 2*y.^2);
bc3 = @(x) 2*log(x);
bc4 = @(x) log(18 + x.^2);
% 定义网格和迭代条件
m = 20;
n = 30;
h = 1/(m+1);
k = 3/(n+1);
x = 1+h:h:2-h;
y = 0+k:k:3-k;
u = zeros(m, n);
tol = 0.5e-10;
err = 1;
% 迭代求解
while err > tol
u_old = u;
for i = 2:m-1
for j = 2:n-1
u(i, j) = (h^2*k^2*f(x(i), y(j), u_old(i, j)) + u_old(i+1, j) + u_old(i-1, j) + u_old(i, j+1) + u_old(i, j-1)) / (2*(h^2 + k^2/(x(i)^2 + y(j)^2)));
end
end
err = max(max(abs(u-u_old)));
end
% 计算精确解
[xm, yn] = meshgrid(x, y);
u_exact = log(xm.^2 + 2*yn.^2);
% 计算输出节点的数值解和误差
nodes = [1.25+0.5i, 1.75+0.5i];
for i = 1:5
node = [1.25+0.5i*i, 1.75+0.5i*i];
idx = round([(imag(node)-k)/k, (real(node)-h)/h]);
u_node = u(idx(1), idx(2));
u_exact_node = log(real(node)^2 + 2*imag(node)^2);
err_node = abs(u_node - u_exact_node);
fprintf('节点(%f,%fi)处的数值解为%f,精确解为%f,误差为%f\n', real(node), imag(node), u_node, u_exact_node, err_node);
end
% 绘制数值解和精确解的误差图
figure;
surf(x, y, abs(u-u_exact)');
title('数值解和精确解的误差');
xlabel('x');
ylabel('y');
```
这个程序使用五点菱形格式迭代求解偏微分方程,并计算输出了指定节点的数值解和误差。在这个程序中,最大误差的迭代误差限为0.5*10^(-10)。
阅读全文