python里如何用迁移学习中的MMD损失取代categorical_crossentropy
时间: 2023-08-30 09:10:59 浏览: 130
在使用迁移学习中的MMD损失替换categorical_crossentropy时,需要先导入MMD损失函数。可以使用以下代码导入MMD损失函数:
```python
import tensorflow as tf
import numpy as np
def compute_kernel(x, y):
x_size = tf.shape(x)[0]
y_size = tf.shape(y)[0]
dim = tf.shape(x)[1]
tiled_x = tf.tile(tf.reshape(x, tf.stack([x_size, 1, dim])), tf.stack([1, y_size, 1]))
tiled_y = tf.tile(tf.reshape(y, tf.stack([1, y_size, dim])), tf.stack([x_size, 1, 1]))
return tf.exp(-tf.reduce_mean(tf.square(tiled_x - tiled_y), axis=[2]) / tf.cast(dim, tf.float32))
def maximum_mean_discrepancy(x, y):
x_kernel = compute_kernel(x, x)
y_kernel = compute_kernel(y, y)
xy_kernel = compute_kernel(x, y)
return tf.reduce_mean(x_kernel) + tf.reduce_mean(y_kernel) - 2 * tf.reduce_mean(xy_kernel)
def mmd_loss(source_samples, target_samples, weight):
"""Calculate the Maximum Mean Discrepancy (MMD) loss for domain adaptation.
The MMD measures the distance between the empirical distribution of the source
samples and the empirical distribution of the target samples.
Parameters:
source_samples (tensor): a tensor of shape (batch_size, num_features) that contains the source samples.
target_samples (tensor): a tensor of shape (batch_size, num_features) that contains the target samples.
weight (float): a scalar weighting factor for the MMD loss.
Returns:
The MMD loss for the given source and target samples.
"""
mmd = maximum_mean_discrepancy(source_samples, target_samples)
return weight * mmd
```
然后,可以在编译模型时将MMD损失函数作为代替categorical_crossentropy。示例如下:
```python
from keras.optimizers import Adam
# 编译模型
model.compile(optimizer=Adam(lr=0.0001), loss=mmd_loss, metrics=['accuracy'])
```
在这个示例中,我们将MMD损失函数作为模型的损失函数,同时使用Adam优化器进行模型训练。
阅读全文