transform点云配准
时间: 2023-10-29 08:59:12 浏览: 124
点云数据的配准算法研究
点云配准是将多个点云数据集对齐的过程,使它们在同一坐标系下具有一致的位置和方向。传统的点云配准方法通常依赖于RANSAC算法进行局部的特征匹配,并使用迭代优化方法来估计刚体变换参数。然而,这些方法在处理大规模点云数据时效率较低。
近年来,基于Transformer的点云配准方法逐渐受到关注。这些方法通过引入全局结构信息来提高特征匹配的准确性和鲁棒性,从而实现了更高效的点云配准。其中,GeoTransformer是一种基于Transformer的点云配准网络,它能够显著提高匹配的正确性,并实现了无需RANSAC的点云配准。
GeoTransformer利用Transformer来进行全局的特征提取和匹配。它通过将点云的坐标进行映射作为Transformer的位置编码,从而实现了对不同位置的点的区分。这种基于坐标的位置编码是transformation-invariant的,对于点云配准任务是合理的。
通过引入Transformer的全局结构感知能力,GeoTransformer能够更好地处理点云中存在的类似的局部区域,提高匹配的准确性。此外,GeoTransformer的代码已经开源,可以供研究者和开发者使用。
综上所述,基于Transformer的点云配准方法能够利用全局结构信息提高特征匹配的准确性和鲁棒性,实现快速且可靠的点云配准。GeoTransformer是其中的一种方法,通过引入Transformer进行全局特征提取和匹配,实现了无需RANSAC的点云配准。
阅读全文