from .tensorflow_backend import * File ~\anaconda4\lib\site-packages\keras\backend\tensorflow_backend.py:24 from ..utils.generic_utils import transpose_shape ImportError: cannot import name 'transpose_shape' from 'keras.utils.generic_utils' (C:\Users\Administrator.DESKTOP-5O5U8HK\AppData\Roaming\Python\Python310\site-packages\keras\utils\generic_utils.py)
时间: 2023-06-28 20:05:46 浏览: 264
这个错误是由于 Keras 版本问题引起的,可能是由于你使用了不兼容的 Keras 版本或 TensorFlow 版本。
你可以尝试升级 Keras 版本,或者更换 TensorFlow 版本,或者同时更换两个库的版本。
如果你使用的是 Anaconda,可以使用以下命令升级 Keras:
```
conda install keras
```
如果你使用的是 pip,可以使用以下命令升级 Keras:
```
pip install keras --upgrade
```
如果升级 Keras 无法解决问题,你可以尝试更换 TensorFlow 版本。可以使用以下命令安装特定版本的 TensorFlow:
```
pip install tensorflow==<version>
```
其中 `<version>` 是指你需要安装的 TensorFlow 版本号。你可以在 TensorFlow 官方网站查看每个版本的兼容性。
相关问题
trainX Y shape is: (4755, 48, 23) (4755, 60, 23) (4755, 5, 1) Hx= 1 Traceback (most recent call last): File ~\anaconda4\envs\tensorflow\lib\site-packages\spyder_kernels\py3compat.py:356 in compat_exec exec(code, globals, locals) File d:\lstnet_keras-master\train_batch_a391.py:172 model,normalize = startTrainMult_1H(df,name,config) File D:\lstnet_keras-master\lstm\LSTNet_Interface_a391.py:400 in startTrainMult_1H model = trainModel(trainX1, trainX2 , trainY, config) File D:\lstnet_keras-master\lstm\LSTNet_Interface_a391.py:323 in trainModel model = LSTNetAttention(trainX1,trainX2,trainY,config) File D:\lstnet_keras-master\lstm\LSTNet_Interface_a391.py:297 in LSTNetAttention res = add([concat,z]) File ~\anaconda4\envs\tensorflow\lib\site-packages\keras\layers\merge.py:555 in add return Add(**kwargs)(inputs) File ~\anaconda4\envs\tensorflow\lib\site-packages\keras\backend\tensorflow_backend.py:75 in symbolic_fn_wrapper return func(*args, **kwargs) File ~\anaconda4\envs\tensorflow\lib\site-packages\keras\engine\base_layer.py:463 in __call__ self.build(unpack_singleton(input_shapes)) File ~\anaconda4\envs\tensorflow\lib\site-packages\keras\layers\merge.py:90 in build output_shape = self._compute_elemwise_op_output_shape(output_shape, File ~\anaconda4\envs\tensorflow\lib\site-packages\keras\layers\merge.py:59 in _compute_elemwise_op_output_shape raise ValueError('Operands could not be broadcast ' ValueError: Operands could not be broadcast together with shapes (23, 32) (5,)
这个错误是由于在使用 Keras 进行模型训练时,两个张量的形状无法进行广播运算所导致的。具体来说,在您的代码中,您使用了 Keras 的 Merge 层中的 Add 层,将两个张量进行相加。但是,这两个张量的形状不匹配,无法进行广播运算,所以会导致这个错误。
您需要检查一下您的代码,确定这两个张量的形状是否正确,并且可以进行相加操作。如果您没有修改过这个代码,可能是数据集的问题,您需要检查一下数据集的形状是否正确。
ValueError: in user code: File "D:\ANACONDA3\lib\site-packages\keras\engine\training.py", line 1160, in train_function * return step_function(self, iterator) File "D:\ANACONDA3\lib\site-packages\keras\engine\training.py", line 1146, in step_function ** outputs = model.distribute_strategy.run(run_step, args=(data,)) File "D:\ANACONDA3\lib\site-packages\keras\engine\training.py", line 1135, in run_step ** outputs = model.train_step(data) File "D:\ANACONDA3\lib\site-packages\keras\engine\training.py", line 994, in train_step loss = self.compute_loss(x, y, y_pred, sample_weight) File "D:\ANACONDA3\lib\site-packages\keras\engine\training.py", line 1052, in compute_loss return self.compiled_loss( File "D:\ANACONDA3\lib\site-packages\keras\engine\compile_utils.py", line 265, in __call__ loss_value = loss_obj(y_t, y_p, sample_weight=sw) File "D:\ANACONDA3\lib\site-packages\keras\losses.py", line 152, in __call__ losses = call_fn(y_true, y_pred) File "D:\ANACONDA3\lib\site-packages\keras\losses.py", line 272, in call ** return ag_fn(y_true, y_pred, **self._fn_kwargs) File "D:\ANACONDA3\lib\site-packages\keras\losses.py", line 1990, in categorical_crossentropy return backend.categorical_crossentropy( File "D:\ANACONDA3\lib\site-packages\keras\backend.py", line 5529, in categorical_crossentropy target.shape.assert_is_compatible_with(output.shape) ValueError: Shapes (None, 1) and (None, 62) are incompatible
这个错误是由于模型的输出形状与目标数据的形状不匹配导致的。
根据错误信息,模型的输出形状是(None, 1),而目标数据的形状是(None, 62)。这表示模型输出的每个样本都是一个形状为(None, 1)的张量,而目标数据的每个样本都是一个形状为(None, 62)的张量。
你可以尝试调整模型的输出层,使其输出与目标数据的形状匹配。或者,你可以修改目标数据的形状,使其与模型的输出形状匹配。这取决于你的具体需求和数据。
如果你需要进一步的帮助,请提供更多关于你的模型和数据的信息,我将尽力提供更准确的解决方案。
阅读全文