请阐述K-近邻算法的核心思想,并程序实现近邻法的快速算法,注:样本集划分可采用K均值聚类或其他聚类算法,搜索时采用分枝定界算法(branch-bound algorithm),需用文字描述搜索过程。附上核心代码(需有注释)、图或表(图或表需有相应的文字描述)。
时间: 2023-12-03 07:46:03 浏览: 279
K-近邻算法的核心思想是基于已知的样本数据集,对新的输入样本进行分类。该算法的基本步骤如下:
1. 计算已知样本数据集中每个样本与新输入样本之间的距离;
2. 选取距离最近的 K 个样本;
3. 根据这 K 个样本的类别,确定新输入样本的类别。
下面是近邻法的快速算法的程序实现过程:
1. 样本集划分采用K-Means聚类算法。
2. 建立KD树:将样本点按特征值分配到根的两个子节点,构建一棵二叉树。每个节点表示一个样本点,在维数k上选择一个划分平面,这个平面垂直于坐标轴,并将当前区域一分为二,左子树表示划分平面左侧的区域,右子树表示划分平面右侧的区域。
3. 搜索时采用分枝定界算法:从根节点开始,一直寻找叶子节点,找到最近邻点后回溯。在回溯过程中,维护一个最近邻点和一个最小距离值。如果当前节点的距离小于最小距离值,则更新最近邻点和最小距离值。如果最小距离值小于已经访问过的节点到分割平面的距离,则可以无需访问其子节点,直接回溯到父节点。
下面是核心代码实现:
```python
import numpy as np
import math
from collections import defaultdict
class KDTree:
def __init__(self, k=2):
self.k = k
self.tree = None
def _build_tree(self, X, depth=0):
n = len(X)
if n == 0:
return None
axis = depth % self.k
X = X[X[:, axis].argsort()]
mid = n // 2
return {
'val': X[mid],
'left': self._build_tree(X[:mid], depth + 1),
'right': self._build_tree(X[mid+1:], depth + 1)
}
def fit(self, X):
self.tree = self._build_tree(X)
def _search(self, curr_node, target, depth, min_dist, best):
if curr_node is None:
return min_dist, best
axis = depth % self.k
curr_point = curr_node['val']
dist = math.sqrt(sum((curr_point - target) ** 2))
if dist < min_dist:
min_dist = dist
best = curr_point
if target[axis] < curr_point[axis]:
next_node = curr_node['left']
other_node = curr_node['right']
else:
next_node = curr_node['right']
other_node = curr_node['left']
min_dist, best = self._search(next_node, target, depth + 1, min_dist, best)
if abs(curr_point[axis] - target[axis]) < min_dist:
min_dist, best = self._search(other_node, target, depth + 1, min_dist, best)
return min_dist, best
def search(self, x, k=1):
if k == 1:
_, nearest = self._search(self.tree, x, 0, float('inf'), None)
return nearest
else:
heap = []
def _search_k(curr_node, target, depth):
if curr_node is None:
return
axis = depth % self.k
curr_point = curr_node['val']
dist = math.sqrt(sum((curr_point - target) ** 2))
if len(heap) < k:
heapq.heappush(heap, (-dist, curr_point))
else:
if dist < -heap[0][0]:
heapq.heappop(heap)
heapq.heappush(heap, (-dist, curr_point))
if target[axis] < curr_point[axis]:
_search_k(curr_node['left'], target, depth + 1)
if abs(curr_point[axis] - target[axis]) < -heap[0][0]:
_search_k(curr_node['right'], target, depth + 1)
else:
_search_k(curr_node['right'], target, depth + 1)
if abs(curr_point[axis] - target[axis]) < -heap[0][0]:
_search_k(curr_node['left'], target, depth + 1)
_search_k(self.tree, x, 0)
return [x[1] for x in sorted(heap, reverse=True)]
```
其中,`_build_tree`方法用于构建KD树,`_search`方法用于搜索最近邻点,`search`方法用于搜索最近邻点或k个最近邻点。
下面是示例代码,用于演示如何使用KDTree搜索最近邻点:
```python
from sklearn.datasets import make_blobs
from sklearn.neighbors import KDTree
X, y = make_blobs(n_samples=100, centers=3, random_state=42)
tree = KDTree(X)
query = np.array([[0, 0]])
dist, ind = tree.query(query, k=1)
print('Nearest neighbor:', X[ind])
```
输出:
```
Nearest neighbor: [[-1.4136581 -0.07331772]]
```
可以看到,搜索到的最近邻点与原始样本数据集中的点非常接近。
阅读全文