bellman-ford algorithm

时间: 2023-04-14 15:01:09 浏览: 56
贝尔曼-福德算法(Bellman-Ford Algorithm)是一种用于解决带有负权边的单源最短路径问题的算法。它可以处理负权边,但不能处理负环。该算法的时间复杂度为O(VE),其中V和E分别为图的顶点数和边数。
相关问题

dijkstra算法、spfa算法、bellman-ford算法求解图的单源最短距离问题的流程图

抱歉,由于我是一个纯文本AI模型,无法直接绘制流程图。但我可以为您提供文字描述来解释这些算法的流程。 1. Dijkstra算法: - 初始化将起始节点的距离设置为0,其他节点的距离设置为无穷大。 - 创建一个优先队列(通常使用最小堆)来存储待处理的节点。 - 将起始节点加入队列中。 - 从队列中取出距离最小的节点,遍历它的邻居节点。 - 更新邻居节点的距离,如果新的距离比当前距离小,则更新距离并将该节点加入队列中。 - 重复以上步骤,直到队列为空或者所有节点都被遍历过。 - 最终得到起始节点到其他节点的最短距离。 2. SPFA算法(Shortest Path Faster Algorithm): - 初始化将起始节点的距离设置为0,其他节点的距离设置为无穷大。 - 创建一个队列来存储待处理的节点。 - 将起始节点加入队列中,并标记为已访问。 - 从队列中取出一个节点,遍历它的邻居节点。 - 若通过当前节点可以获得更短的路径,则更新邻居节点的距离,并将该节点加入队列中。 - 重复以上步骤,直到队列为空或者所有节点都被遍历过。 - 最终得到起始节点到其他节点的最短距离。 3. Bellman-Ford算法: - 初始化将起始节点的距离设置为0,其他节点的距离设置为无穷大。 - 重复以下步骤,直到没有边需要更新: - 遍历图中的所有边,对每条边进行松弛操作(即更新节点的距离)。 - 最后进行一次遍历,检查是否存在负权回路(即路径上的权值之和为负数),如果存在,则无法求解最短路径;否则,得到起始节点到其他节点的最短距离。 这些算法都是用于解决图的单源最短距离问题,但它们在实现细节和效率上略有不同。希望以上描述对您有所帮助!

求图中一个点到其他点的最短距离,用Dijkstra算法、SPFA、Bellman-Ford三种算法在一个程序中进行写c语言的代码

以下是使用C语言编写的程序,其中包含Dijkstra算法、SPFA算法和Bellman-Ford算法来求解一个点到其他点的最短距离。请注意,代码中的图是用邻接矩阵表示的。 ```c #include <stdio.h> #include <stdlib.h> #include <limits.h> #define MAX_VERTICES 100 // 邻接矩阵表示图 int graph[MAX_VERTICES][MAX_VERTICES]; int num_vertices; // 辅助队列结构体 typedef struct { int vertex; int distance; } QueueItem; // 辅助队列 QueueItem queue[MAX_VERTICES]; int front = 0, rear = 0; void enqueue(QueueItem item) { queue[rear++] = item; } QueueItem dequeue() { return queue[front++]; } int is_queue_empty() { return front == rear; } // Dijkstra算法 void dijkstra(int start_vertex) { int distances[MAX_VERTICES]; int visited[MAX_VERTICES] = {0}; for (int i = 0; i < num_vertices; ++i) { distances[i] = INT_MAX; } distances[start_vertex] = 0; for (int count = 0; count < num_vertices - 1; ++count) { int u = -1; int min_distance = INT_MAX; // 找到当前未访问的节点中距离最小的节点 for (int i = 0; i < num_vertices; ++i) { if (!visited[i] && distances[i] < min_distance) { min_distance = distances[i]; u = i; } } if (u == -1) { break; } visited[u] = 1; // 更新与u相邻节点的距离 for (int v = 0; v < num_vertices; ++v) { if (!visited[v] && graph[u][v] && distances[u] != INT_MAX && distances[u] + graph[u][v] < distances[v]) { distances[v] = distances[u] + graph[u][v]; } } } // 输出最短距离 printf("Dijkstra Algorithm:\n"); for (int i = 0; i < num_vertices; ++i) { printf("Vertex %d -> Vertex %d: %d\n", start_vertex, i, distances[i]); } } // SPFA算法 void spfa(int start_vertex) { int distances[MAX_VERTICES]; int in_queue[MAX_VERTICES] = {0}; for (int i = 0; i < num_vertices; ++i) { distances[i] = INT_MAX; } distances[start_vertex] = 0; enqueue((QueueItem) {start_vertex, 0}); in_queue[start_vertex] = 1; while (!is_queue_empty()) { QueueItem item = dequeue(); int u = item.vertex; in_queue[u] = 0; // 更新与u相邻节点的距离 for (int v = 0; v < num_vertices; ++v) { if (graph[u][v] && distances[u] != INT_MAX && distances[u] + graph[u][v] < distances[v]) { distances[v] = distances[u] + graph[u][v]; if (!in_queue[v]) { enqueue((QueueItem) {v, distances[v]}); in_queue[v] = 1; } } } } // 输出最短距离 printf("SPFA Algorithm:\n"); for (int i = 0; i < num_vertices; ++i) { printf("Vertex %d -> Vertex %d: %d\n", start_vertex, i, distances[i]); } } // Bellman-Ford算法 void bellman_ford(int start_vertex) { int distances[MAX_VERTICES]; for (int i = 0; i < num_vertices; ++i) { distances[i] = INT_MAX; } distances[start_vertex] = 0; // 对每条边进行num_vertices - 1次松弛操作 for (int count = 0; count < num_vertices - 1; ++count) { for (int u = 0; u < num_vertices; ++u) { for (int v = 0; v < num_vertices; ++v) { if (graph[u][v] && distances[u] != INT_MAX && distances[u] + graph[u][v] < distances[v]) { distances[v] = distances[u] + graph[u][v]; } } } } // 输出最短距离 printf("Bellman-Ford Algorithm:\n"); for (int i = 0; i < num_vertices; ++i) { printf("Vertex %d -> Vertex %d: %d\n", start_vertex, i, distances[i]); } } int main() { // 初始化图 num_vertices = 5; // 邻接矩阵表示图 int adjacency_matrix[5][5] = { {0, 2, 0, 1, 0}, {2, 0, 3, 2, 0}, {0, 3, 0, 0, 1}, {1, 2, 0, 0, 4}, {0, 0, 1, 4, 0} }; for (int i = 0; i < num_vertices; ++i) { for (int j = 0; j < num_vertices; ++j) { graph[i][j] = adjacency_matrix[i][j]; } } // 调用算法求解最短距离 int start_vertex = 0; dijkstra(start_vertex); spfa(start_vertex); bellman_ford(start_vertex); return 0; } ``` 请注意,此程序的图是固定的,如果您希望输入不同的图,请根据需要进行修改。

相关推荐

用c++解决Several currency exchange points are working in our city. Let us suppose that each point specializes in two particular currencies and performs exchange operations only with these currencies. There can be several points specializing in the same pair of currencies. Each point has its own exchange rates, exchange rate of A to B is the quantity of B you get for 1A. Also each exchange point has some commission, the sum you have to pay for your exchange operation. Commission is always collected in source currency. For example, if you want to exchange 100 US Dollars into Russian Rubles at the exchange point, where the exchange rate is 29.75, and the commission is 0.39 you will get (100 - 0.39) * 29.75 = 2963.3975RUR. You surely know that there are N different currencies you can deal with in our city. Let us assign unique integer number from 1 to N to each currency. Then each exchange point can be described with 6 numbers: integer A and B - numbers of currencies it exchanges, and real RAB, CAB, RBA and CBA - exchange rates and commissions when exchanging A to B and B to A respectively. Nick has some money in currency S and wonders if he can somehow, after some exchange operations, increase his capital. Of course, he wants to have his money in currency S in the end. Help him to answer this difficult question. Nick must always have non-negative sum of money while making his operations. Input The first line contains four numbers: N - the number of currencies, M - the number of exchange points, S - the number of currency Nick has and V - the quantity of currency units he has. The following M lines contain 6 numbers each - the description of the corresponding exchange point - in specified above order. Numbers are separated by one or more spaces. 1 ≤ S ≤ N ≤ 100, 1 ≤ M ≤ 100, V is real number, 0 ≤ V ≤ 103. For each point exchange rates and commissions are real, given with at most two digits after the decimal point, 10-2 ≤ rate ≤ 102, 0 ≤ commission ≤ 102. Let us call some sequence of the exchange operations simple if no exchange point is used more than once in this sequence. You may assume that ratio of the numeric values of the sums at the end and at the beginning of any simple sequence of the exchange operations will be less than 104. Output If Nick can increase his wealth, output YES, in other case output NO.

最新推荐

施耐德PLC例程源码twidopid控制实列

施耐德PLC例程源码twido pid 控制实列提取方式是百度网盘分享地址

node-v19.2.0-darwin-arm64.tar.xz

Node.js,简称Node,是一个开源且跨平台的JavaScript运行时环境,它允许在浏览器外运行JavaScript代码。Node.js于2009年由Ryan Dahl创立,旨在创建高性能的Web服务器和网络应用程序。它基于Google Chrome的V8 JavaScript引擎,可以在Windows、Linux、Unix、Mac OS X等操作系统上运行。 Node.js的特点之一是事件驱动和非阻塞I/O模型,这使得它非常适合处理大量并发连接,从而在构建实时应用程序如在线游戏、聊天应用以及实时通讯服务时表现卓越。此外,Node.js使用了模块化的架构,通过npm(Node package manager,Node包管理器),社区成员可以共享和复用代码,极大地促进了Node.js生态系统的发展和扩张。 Node.js不仅用于服务器端开发。随着技术的发展,它也被用于构建工具链、开发桌面应用程序、物联网设备等。Node.js能够处理文件系统、操作数据库、处理网络请求等,因此,开发者可以用JavaScript编写全栈应用程序,这一点大大提高了开发效率和便捷性。 在实践中,许多大型企业和组织已经采用Node.js作为其Web应用程序的开发平台,如Netflix、PayPal和Walmart等。它们利用Node.js提高了应用性能,简化了开发流程,并且能更快地响应市场需求。

c++校园超市商品信息管理系统课程设计说明书(含源代码) (2).pdf

校园超市商品信息管理系统课程设计旨在帮助学生深入理解程序设计的基础知识,同时锻炼他们的实际操作能力。通过设计和实现一个校园超市商品信息管理系统,学生掌握了如何利用计算机科学与技术知识解决实际问题的能力。在课程设计过程中,学生需要对超市商品和销售员的关系进行有效管理,使系统功能更全面、实用,从而提高用户体验和便利性。 学生在课程设计过程中展现了积极的学习态度和纪律,没有缺勤情况,演示过程流畅且作品具有很强的使用价值。设计报告完整详细,展现了对问题的深入思考和解决能力。在答辩环节中,学生能够自信地回答问题,展示出扎实的专业知识和逻辑思维能力。教师对学生的表现予以肯定,认为学生在课程设计中表现出色,值得称赞。 整个课程设计过程包括平时成绩、报告成绩和演示与答辩成绩三个部分,其中平时表现占比20%,报告成绩占比40%,演示与答辩成绩占比40%。通过这三个部分的综合评定,最终为学生总成绩提供参考。总评分以百分制计算,全面评估学生在课程设计中的各项表现,最终为学生提供综合评价和反馈意见。 通过校园超市商品信息管理系统课程设计,学生不仅提升了对程序设计基础知识的理解与应用能力,同时也增强了团队协作和沟通能力。这一过程旨在培养学生综合运用技术解决问题的能力,为其未来的专业发展打下坚实基础。学生在进行校园超市商品信息管理系统课程设计过程中,不仅获得了理论知识的提升,同时也锻炼了实践能力和创新思维,为其未来的职业发展奠定了坚实基础。 校园超市商品信息管理系统课程设计的目的在于促进学生对程序设计基础知识的深入理解与掌握,同时培养学生解决实际问题的能力。通过对系统功能和用户需求的全面考量,学生设计了一个实用、高效的校园超市商品信息管理系统,为用户提供了更便捷、更高效的管理和使用体验。 综上所述,校园超市商品信息管理系统课程设计是一项旨在提升学生综合能力和实践技能的重要教学活动。通过此次设计,学生不仅深化了对程序设计基础知识的理解,还培养了解决实际问题的能力和团队合作精神。这一过程将为学生未来的专业发展提供坚实基础,使其在实际工作中能够胜任更多挑战。

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire

【迁移学习在车牌识别中的应用优势与局限】: 讨论迁移学习在车牌识别中的应用优势和局限

![【迁移学习在车牌识别中的应用优势与局限】: 讨论迁移学习在车牌识别中的应用优势和局限](https://img-blog.csdnimg.cn/direct/916e743fde554bcaaaf13800d2f0ac25.png) # 1. 介绍迁移学习在车牌识别中的背景 在当今人工智能技术迅速发展的时代,迁移学习作为一种强大的技术手段,在车牌识别领域展现出了巨大的潜力和优势。通过迁移学习,我们能够将在一个领域中学习到的知识和模型迁移到另一个相关领域,从而减少对大量标注数据的需求,提高模型训练效率,加快模型收敛速度。这种方法不仅能够增强模型的泛化能力,提升识别的准确率,还能有效应对数据

8155用作计时器该如何接线

8155是一种集成电路,可以作为计时器、计数器或者并行输入/输出设备使用。下面以将8155作为计时器为例,介绍一下其接线方法: 1. 将VCC引脚连接到正电源,将GND引脚连接到地线。 2. 将CLK引脚连接到一个外部时钟源。时钟源可以是一个晶体振荡器或者其他的时钟信号。 3. 将INTE引脚连接到一个外部中断请求信号。当计时器计数到设定的值时,将会产生一个中断请求信号。 4. 将CS引脚连接到电路中的一个控制信号,用来选择计时器模式或者输入/输出模式。 5. 将RD引脚连接到电路中的一个控制信号,用来读取计数器的值。 6. 将WR引脚连接到电路中的一个控制信号,用来写入计数器的值

建筑供配电系统相关课件.pptx

建筑供配电系统是建筑中的重要组成部分,负责为建筑内的设备和设施提供电力支持。在建筑供配电系统相关课件中介绍了建筑供配电系统的基本知识,其中提到了电路的基本概念。电路是电流流经的路径,由电源、负载、开关、保护装置和导线等组成。在电路中,涉及到电流、电压、电功率和电阻等基本物理量。电流是单位时间内电路中产生或消耗的电能,而电功率则是电流在单位时间内的功率。另外,电路的工作状态包括开路状态、短路状态和额定工作状态,各种电气设备都有其额定值,在满足这些额定条件下,电路处于正常工作状态。而交流电则是实际电力网中使用的电力形式,按照正弦规律变化,即使在需要直流电的行业也多是通过交流电整流获得。 建筑供配电系统的设计和运行是建筑工程中一个至关重要的环节,其正确性和稳定性直接关系到建筑物内部设备的正常运行和电力安全。通过了解建筑供配电系统的基本知识,可以更好地理解和应用这些原理,从而提高建筑电力系统的效率和可靠性。在课件中介绍了电工基本知识,包括电路的基本概念、电路的基本物理量和电路的工作状态。这些知识不仅对电气工程师和建筑设计师有用,也对一般人了解电力系统和用电有所帮助。 值得一提的是,建筑供配电系统在建筑工程中的重要性不仅仅是提供电力支持,更是为了确保建筑物的安全性。在建筑供配电系统设计中必须考虑到保护装置的设置,以确保电路在发生故障时及时切断电源,避免潜在危险。此外,在电气设备的选型和布置时也需要根据建筑的特点和需求进行合理规划,以提高电力系统的稳定性和安全性。 在实际应用中,建筑供配电系统的设计和建设需要考虑多个方面的因素,如建筑物的类型、规模、用途、电力需求、安全标准等。通过合理的设计和施工,可以确保建筑供配电系统的正常运行和安全性。同时,在建筑供配电系统的维护和管理方面也需要重视,定期检查和维护电气设备,及时发现和解决问题,以确保建筑物内部设备的正常使用。 总的来说,建筑供配电系统是建筑工程中不可或缺的一部分,其重要性不言而喻。通过学习建筑供配电系统的相关知识,可以更好地理解和应用这些原理,提高建筑电力系统的效率和可靠性,确保建筑物内部设备的正常运行和电力安全。建筑供配电系统的设计、建设、维护和管理都需要严谨细致,只有这样才能确保建筑物的电力系统稳定、安全、高效地运行。

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依

【未来发展趋势下的车牌识别技术展望和发展方向】: 展望未来发展趋势下的车牌识别技术和发展方向

![【未来发展趋势下的车牌识别技术展望和发展方向】: 展望未来发展趋势下的车牌识别技术和发展方向](https://img-blog.csdnimg.cn/direct/916e743fde554bcaaaf13800d2f0ac25.png) # 1. 车牌识别技术简介 车牌识别技术是一种通过计算机视觉和深度学习技术,实现对车牌字符信息的自动识别的技术。随着人工智能技术的飞速发展,车牌识别技术在智能交通、安防监控、物流管理等领域得到了广泛应用。通过车牌识别技术,可以实现车辆识别、违章监测、智能停车管理等功能,极大地提升了城市管理和交通运输效率。本章将从基本原理、相关算法和技术应用等方面介绍

在Unity 中开发2D 游戏时怎样让父物体显示在子物体的下方

在Unity中,可以通过修改物体的层级关系来控制父物体和子物体的显示顺序。具体步骤如下: 1. 在Unity的场景视图中,选中子物体。 2. 将子物体拖拽到父物体上,成为父物体的子物体。 3. 在Inspector面板中,将子物体的Transform组件中的Position、Rotation、Scale都清零,确保子物体的坐标系和父物体一致。 4. 在层级面板中,将父物体的层级向上移动,使其显示在子物体的下方。 这样就可以控制父物体和子物体的显示顺序了。注意,如果两个物体层级相同,它们的渲染顺序是由它们在层级面板中的顺序决定的。