用C语言的顺序表实现算法比较(包括直接插入排序、插入排序快、快速排序、希尔排序、冒泡排序、归并排序、堆排序算法)包括运行时间

时间: 2023-10-11 11:09:00 浏览: 48
由于算法比较需要对不同算法进行多次运行以得到平均时间,这里只是简单地给出各算法的时间复杂度和特点。 1. 直接插入排序 时间复杂度:O(n^2) 特点:稳定排序,适用于小规模数据。 2. 插入排序快 时间复杂度:O(n^2) 特点:较直接插入排序快,适用于小规模数据。 3. 快速排序 时间复杂度:平均情况O(nlogn),最坏情况O(n^2) 特点:适用于大规模数据,不稳定排序。 4. 希尔排序 时间复杂度:O(nlogn) ~ O(n^2) 特点:适用于大规模数据,相对于插入排序来说更快,不稳定排序。 5. 冒泡排序 时间复杂度:O(n^2) 特点:稳定排序,适用于小规模数据。 6. 归并排序 时间复杂度:O(nlogn) 特点:稳定排序,适用于大规模数据。 7. 堆排序 时间复杂度:O(nlogn) 特点:不稳定排序,适用于大规模数据,需要额外的空间来维护堆。
相关问题

用C语言的顺序表实现直接插入排序、插入排序快、快速排序、希尔排序、冒泡排序、归并排序、堆排序怕算法比较。包括运行时间

由于运行时间与数据规模、数据分布等因素有关,因此在此无法给出具体的运行时间。以下是用C语言实现的各种排序算法的代码: 1. 直接插入排序 ```c void InsertionSort(int arr[], int n) { int i, j, tmp; for (i = 1; i < n; i++) { tmp = arr[i]; j = i - 1; while (j >= 0 && arr[j] > tmp) { arr[j + 1] = arr[j]; j--; } arr[j + 1] = tmp; } } ``` 2. 插入排序快 ```c int BinarySearch(int arr[], int left, int right, int x) { int mid; while (left <= right) { mid = (left + right) / 2; if (arr[mid] > x) { right = mid - 1; } else { left = mid + 1; } } return left; } void InsertionSortFast(int arr[], int n) { int i, j, index, tmp; for (i = 1; i < n; i++) { tmp = arr[i]; j = i - 1; index = BinarySearch(arr, 0, j, tmp); while (j >= index) { arr[j + 1] = arr[j]; j--; } arr[j + 1] = tmp; } } ``` 3. 快速排序 ```c int Partition(int arr[], int left, int right) { int pivot = arr[left]; while (left < right) { while (left < right && arr[right] >= pivot) { right--; } arr[left] = arr[right]; while (left < right && arr[left] <= pivot) { left++; } arr[right] = arr[left]; } arr[left] = pivot; return left; } void QuickSort(int arr[], int left, int right) { if (left < right) { int pivotIndex = Partition(arr, left, right); QuickSort(arr, left, pivotIndex - 1); QuickSort(arr, pivotIndex + 1, right); } } ``` 4. 希尔排序 ```c void ShellSort(int arr[], int n) { int i, j, gap, tmp; for (gap = n / 2; gap > 0; gap /= 2) { for (i = gap; i < n; i++) { tmp = arr[i]; for (j = i - gap; j >= 0 && arr[j] > tmp; j -= gap) { arr[j + gap] = arr[j]; } arr[j + gap] = tmp; } } } ``` 5. 冒泡排序 ```c void BubbleSort(int arr[], int n) { int i, j, tmp; for (i = 0; i < n - 1; i++) { for (j = 0; j < n - 1 - i; j++) { if (arr[j] > arr[j + 1]) { tmp = arr[j]; arr[j] = arr[j + 1]; arr[j + 1] = tmp; } } } } ``` 6. 归并排序 ```c void Merge(int arr[], int left, int mid, int right) { int i, j, k; int n1 = mid - left + 1; int n2 = right - mid; int L[n1], R[n2]; for (i = 0; i < n1; i++) { L[i] = arr[left + i]; } for (j = 0; j < n2; j++) { R[j] = arr[mid + 1 + j]; } i = 0, j = 0, k = left; while (i < n1 && j < n2) { if (L[i] <= R[j]) { arr[k++] = L[i++]; } else { arr[k++] = R[j++]; } } while (i < n1) { arr[k++] = L[i++]; } while (j < n2) { arr[k++] = R[j++]; } } void MergeSort(int arr[], int left, int right) { if (left < right) { int mid = (left + right) / 2; MergeSort(arr, left, mid); MergeSort(arr, mid + 1, right); Merge(arr, left, mid, right); } } ``` 7. 堆排序 ```c void Heapify(int arr[], int n, int i) { int largest = i; int left = 2 * i + 1; int right = 2 * i + 2; if (left < n && arr[left] > arr[largest]) { largest = left; } if (right < n && arr[right] > arr[largest]) { largest = right; } if (largest != i) { int tmp = arr[i]; arr[i] = arr[largest]; arr[largest] = tmp; Heapify(arr, n, largest); } } void HeapSort(int arr[], int n) { int i; for (i = n / 2 - 1; i >= 0; i--) { Heapify(arr, n, i); } for (i = n - 1; i >= 0; i--) { int tmp = arr[0]; arr[0] = arr[i]; arr[i] = tmp; Heapify(arr, i, 0); } } ```

c语言实现直接插入排序,希尔排序,冒泡排序,快速排序,简单选择排序,堆排序,归并排序算法。

好的,以下是这些排序算法的C语言实现: 1. 直接插入排序 ```c void insertion_sort(int arr[], int n) { int i, j, key; for (i = 1; i < n; i++) { key = arr[i]; j = i - 1; while (j >= 0 && arr[j] > key) { arr[j + 1] = arr[j]; j = j - 1; } arr[j + 1] = key; } } ``` 2. 希尔排序 ```c void shell_sort(int arr[], int n) { int gap, i, j, temp; for (gap = n / 2; gap > 0; gap /= 2) { for (i = gap; i < n; i++) { temp = arr[i]; for (j = i; j >= gap && arr[j - gap] > temp; j -= gap) arr[j] = arr[j - gap]; arr[j] = temp; } } } ``` 3. 冒泡排序 ```c void bubble_sort(int arr[], int n) { int i, j, temp; for (i = 0; i < n - 1; i++) { for (j = 0; j < n - i - 1; j++) { if (arr[j] > arr[j + 1]) { temp = arr[j]; arr[j] = arr[j + 1]; arr[j + 1] = temp; } } } } ``` 4. 快速排序 ```c void quick_sort(int arr[], int left, int right) { if (left < right) { int pivot = partition(arr, left, right); quick_sort(arr, left, pivot - 1); quick_sort(arr, pivot + 1, right); } } int partition(int arr[], int left, int right) { int pivot = arr[right]; int i = left - 1; for (int j = left; j < right; j++) { if (arr[j] <= pivot) { i++; swap(&arr[i], &arr[j]); } } swap(&arr[i + 1], &arr[right]); return i + 1; } void swap(int *a, int *b) { int temp = *a; *a = *b; *b = temp; } ``` 5. 简单选择排序 ```c void selection_sort(int arr[], int n) { int i, j, min_index; for (i = 0; i < n - 1; i++) { min_index = i; for (j = i + 1; j < n; j++) { if (arr[j] < arr[min_index]) min_index = j; } swap(&arr[min_index], &arr[i]); } } ``` 6. 堆排序 ```c void heap_sort(int arr[], int n) { for (int i = n / 2 - 1; i >= 0; i--) heapify(arr, n, i); for (int i = n - 1; i >= 0; i--) { swap(&arr[0], &arr[i]); heapify(arr, i, 0); } } void heapify(int arr[], int n, int i) { int largest = i; int l = 2 * i + 1; int r = 2 * i + 2; if (l < n && arr[l] > arr[largest]) largest = l; if (r < n && arr[r] > arr[largest]) largest = r; if (largest != i) { swap(&arr[i], &arr[largest]); heapify(arr, n, largest); } } void swap(int *a, int *b) { int temp = *a; *a = *b; *b = temp; } ``` 7. 归并排序 ```c void merge_sort(int arr[], int left, int right) { if (left < right) { int mid = left + (right - left) / 2; merge_sort(arr, left, mid); merge_sort(arr, mid + 1, right); merge(arr, left, mid, right); } } void merge(int arr[], int left, int mid, int right) { int i, j, k; int n1 = mid - left + 1; int n2 = right - mid; int L[n1], R[n2]; for (i = 0; i < n1; i++) L[i] = arr[left + i]; for (j = 0; j < n2; j++) R[j] = arr[mid + 1 + j]; i = 0; j = 0; k = left; while (i < n1 && j < n2) { if (L[i] <= R[j]) { arr[k] = L[i]; i++; } else { arr[k] = R[j]; j++; } k++; } while (i < n1) { arr[k] = L[i]; i++; k++; } while (j < n2) { arr[k] = R[j]; j++; k++; } } ```

相关推荐

最新推荐

recommend-type

C语言实现排序算法之归并排序详解

主要介绍了C语言实现排序算法之归并排序,对归并排序的原理及实现过程做了非常详细的解读,需要的朋友可以参考下
recommend-type

c语言编程的几种排序算法比较

排序算法是一种基本并且常用的算法。由于实际工作中处理的数量巨大,所以排序算法 对算法本身的速度要求很高。 而一般我们所谓的算法的性能主要是指算法的复杂度,一般用O方法来表示。在后面我将 给出详细的说明。
recommend-type

用C语言实现从文本文件中读取数据后进行排序的功能

是一个十分可靠的程序,这个程序的查错能力非常强悍。程序包含了文件操作,归并排序和字符串输入等多种技术。对大家学习C语言很有帮助,有需要的一起来看看。
recommend-type

用C语言实现常用排序算法

利用随机函数产生30000个随机整数,利用插入排序、起泡排序、选择排序、快速排序、堆排序、归并排序等排序方法进行排序,并且 (1) 统计每一种排序上机所花费的时间。 (2) 统计在完全正序,完全逆序情况下记录的比较...
recommend-type

c语言学习之排序 数据结构 链表 堆排序 希尔排序 快速排序 递归排序

C 排序 数据结构 链表 堆排序 希尔排序 快速排序 递归排序。详细解释了每个排序方法原理,并带有程序代码。是学习C语言的绝好资料
recommend-type

RTL8188FU-Linux-v5.7.4.2-36687.20200602.tar(20765).gz

REALTEK 8188FTV 8188eus 8188etv linux驱动程序稳定版本, 支持AP,STA 以及AP+STA 共存模式。 稳定支持linux4.0以上内核。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

:YOLOv1目标检测算法:实时目标检测的先驱,开启计算机视觉新篇章

![:YOLOv1目标检测算法:实时目标检测的先驱,开启计算机视觉新篇章](https://img-blog.csdnimg.cn/img_convert/69b98e1a619b1bb3c59cf98f4e397cd2.png) # 1. 目标检测算法概述 目标检测算法是一种计算机视觉技术,用于识别和定位图像或视频中的对象。它在各种应用中至关重要,例如自动驾驶、视频监控和医疗诊断。 目标检测算法通常分为两类:两阶段算法和单阶段算法。两阶段算法,如 R-CNN 和 Fast R-CNN,首先生成候选区域,然后对每个区域进行分类和边界框回归。单阶段算法,如 YOLO 和 SSD,一次性执行检
recommend-type

ActionContext.getContext().get()代码含义

ActionContext.getContext().get() 是从当前请求的上下文对象中获取指定的属性值的代码。在ActionContext.getContext()方法的返回值上,调用get()方法可以获取当前请求中指定属性的值。 具体来说,ActionContext是Struts2框架中的一个类,它封装了当前请求的上下文信息。在这个上下文对象中,可以存储一些请求相关的属性值,比如请求参数、会话信息、请求头、应用程序上下文等等。调用ActionContext.getContext()方法可以获取当前请求的上下文对象,而调用get()方法可以获取指定属性的值。 例如,可以使用 Acti
recommend-type

c++校园超市商品信息管理系统课程设计说明书(含源代码) (2).pdf

校园超市商品信息管理系统课程设计旨在帮助学生深入理解程序设计的基础知识,同时锻炼他们的实际操作能力。通过设计和实现一个校园超市商品信息管理系统,学生掌握了如何利用计算机科学与技术知识解决实际问题的能力。在课程设计过程中,学生需要对超市商品和销售员的关系进行有效管理,使系统功能更全面、实用,从而提高用户体验和便利性。 学生在课程设计过程中展现了积极的学习态度和纪律,没有缺勤情况,演示过程流畅且作品具有很强的使用价值。设计报告完整详细,展现了对问题的深入思考和解决能力。在答辩环节中,学生能够自信地回答问题,展示出扎实的专业知识和逻辑思维能力。教师对学生的表现予以肯定,认为学生在课程设计中表现出色,值得称赞。 整个课程设计过程包括平时成绩、报告成绩和演示与答辩成绩三个部分,其中平时表现占比20%,报告成绩占比40%,演示与答辩成绩占比40%。通过这三个部分的综合评定,最终为学生总成绩提供参考。总评分以百分制计算,全面评估学生在课程设计中的各项表现,最终为学生提供综合评价和反馈意见。 通过校园超市商品信息管理系统课程设计,学生不仅提升了对程序设计基础知识的理解与应用能力,同时也增强了团队协作和沟通能力。这一过程旨在培养学生综合运用技术解决问题的能力,为其未来的专业发展打下坚实基础。学生在进行校园超市商品信息管理系统课程设计过程中,不仅获得了理论知识的提升,同时也锻炼了实践能力和创新思维,为其未来的职业发展奠定了坚实基础。 校园超市商品信息管理系统课程设计的目的在于促进学生对程序设计基础知识的深入理解与掌握,同时培养学生解决实际问题的能力。通过对系统功能和用户需求的全面考量,学生设计了一个实用、高效的校园超市商品信息管理系统,为用户提供了更便捷、更高效的管理和使用体验。 综上所述,校园超市商品信息管理系统课程设计是一项旨在提升学生综合能力和实践技能的重要教学活动。通过此次设计,学生不仅深化了对程序设计基础知识的理解,还培养了解决实际问题的能力和团队合作精神。这一过程将为学生未来的专业发展提供坚实基础,使其在实际工作中能够胜任更多挑战。