基于LAB的黑白照片彩色化算法
时间: 2023-12-10 08:16:20 浏览: 100
LAB是一种颜色空间,它将颜色分为亮度(L)和色度(A和B)三个通道,其中亮度通道表示图像的明暗程度,色度通道表示图像的颜色。基于LAB的黑白照片彩色化算法可以通过以下步骤实现:
1. 将黑白照片转换成LAB颜色空间。
2. 将亮度通道L保持不变,将色度通道A和B设置为0,得到一张灰度图像。
3. 对灰度图像进行图像增强处理,例如直方图均衡化、对比度增强等。增强后的图像更容易区分不同颜色的区域。
4. 基于增强后的灰度图像和原始LAB图像,使用卷积神经网络(CNN)学习两者之间的映射关系。CNN可以学习到图像的特征,并将其映射到对应的颜色。
5. 将黑白照片转换成LAB颜色空间后,将增强后的灰度图像输入到CNN中,得到对应的彩色图像。
6. 将彩色图像转换回RGB颜色空间,即可得到彩色化后的照片。
需要注意的是,基于LAB的黑白照片彩色化算法并不是一种通用的算法,它只能适用于某些特定的场景和图像。因此,在使用该算法时,需要根据具体情况进行调整和优化。
相关问题
基于LAB的黑白照片彩色化算法代码
以下是基于LAB的黑白照片彩色化算法的代码,使用Python实现:
```python
import cv2
import numpy as np
def colorize(img_path):
# 加载黑白图片
img = cv2.imread(img_path, cv2.IMREAD_GRAYSCALE)
# 将黑白图片转换为LAB色彩空间
lab_img = cv2.cvtColor(img, cv2.COLOR_GRAY2LAB)
# 从LAB色彩空间中提取L通道
L = lab_img[:, :, 0]
# 计算a和b通道的值
a = np.mean(lab_img[:, :, 1])
b = np.mean(lab_img[:, :, 2])
# 将a和b通道的值扩展为与L通道相同的维度
a = np.tile(a, (L.shape[0], L.shape[1]))
b = np.tile(b, (L.shape[0], L.shape[1]))
# 将L、a、b三个通道合并成彩色图像
colorized = np.dstack((L, a, b))
# 将彩色图像转换为RGB色彩空间
colorized = cv2.cvtColor(colorized, cv2.COLOR_LAB2BGR)
return colorized
```
使用方法:
```python
colorized_img = colorize('path/to/black_and_white_image.jpg')
cv2.imshow('Colorized Image', colorized_img)
cv2.waitKey(0)
```
其中,`'path/to/black_and_white_image.jpg'`为黑白图片的路径。运行后会显示彩色化后的图片。
基于lab算法将黑白照片彩色化的评价模型代码
以下是一个基于 LAB 算法将黑白照片彩色化的评价模型的代码。该代码使用 PyTorch 框架实现。
```python
import torch
import torch.nn as nn
import torch.optim as optim
from torchvision import transforms
from PIL import Image
import numpy as np
# 定义评价模型的网络结构
class ColorizationNet(nn.Module):
def __init__(self):
super(ColorizationNet, self).__init__()
# 输入层
self.conv1 = nn.Conv2d(1, 64, kernel_size=3, stride=1, padding=1)
self.relu1 = nn.ReLU(inplace=True)
# 下采样
self.conv2 = nn.Conv2d(64, 64, kernel_size=3, stride=2, padding=1)
self.relu2 = nn.ReLU(inplace=True)
self.conv3 = nn.Conv2d(64, 128, kernel_size=3, stride=1, padding=1)
self.relu3 = nn.ReLU(inplace=True)
self.conv4 = nn.Conv2d(128, 128, kernel_size=3, stride=2, padding=1)
self.relu4 = nn.ReLU(inplace=True)
self.conv5 = nn.Conv2d(128, 256, kernel_size=3, stride=1, padding=1)
self.relu5 = nn.ReLU(inplace=True)
self.conv6 = nn.Conv2d(256, 256, kernel_size=3, stride=1, padding=1)
self.relu6 = nn.ReLU(inplace=True)
self.conv7 = nn.Conv2d(256, 256, kernel_size=3, stride=2, padding=1)
self.relu7 = nn.ReLU(inplace=True)
self.conv8 = nn.Conv2d(256, 512, kernel_size=3, stride=1, padding=1)
self.relu8 = nn.ReLU(inplace=True)
self.conv9 = nn.Conv2d(512, 512, kernel_size=3, stride=1, padding=1)
self.relu9 = nn.ReLU(inplace=True)
self.conv10 = nn.Conv2d(512, 512, kernel_size=3, stride=2, padding=1)
self.relu10 = nn.ReLU(inplace=True)
self.conv11 = nn.Conv2d(512, 512, kernel_size=3, stride=1, padding=1)
self.relu11 = nn.ReLU(inplace=True)
self.conv12 = nn.Conv2d(512, 512, kernel_size=3, stride=1, padding=1)
self.relu12 = nn.ReLU(inplace=True)
self.conv13 = nn.Conv2d(512, 512, kernel_size=3, stride=1, padding=1)
self.relu13 = nn.ReLU(inplace=True)
# 反卷积层
self.conv14 = nn.ConvTranspose2d(512, 256, kernel_size=4, stride=2, padding=1)
self.relu14 = nn.ReLU(inplace=True)
self.conv15 = nn.Conv2d(256, 256, kernel_size=3, stride=1, padding=1)
self.relu15 = nn.ReLU(inplace=True)
self.conv16 = nn.Conv2d(256, 256, kernel_size=3, stride=1, padding=1)
self.relu16 = nn.ReLU(inplace=True)
# 上采样
self.conv17 = nn.ConvTranspose2d(256, 128, kernel_size=4, stride=2, padding=1)
self.relu17 = nn.ReLU(inplace=True)
self.conv18 = nn.Conv2d(128, 128, kernel_size=3, stride=1, padding=1)
self.relu18 = nn.ReLU(inplace=True)
self.conv19 = nn.ConvTranspose2d(128, 64, kernel_size=4, stride=2, padding=1)
self.relu19 = nn.ReLU(inplace=True)
self.conv20 = nn.Conv2d(64, 64, kernel_size=3, stride=1, padding=1)
self.relu20 = nn.ReLU(inplace=True)
self.conv21 = nn.Conv2d(64, 2, kernel_size=3, stride=1, padding=1)
def forward(self, gray):
# 编码器
x1 = self.conv1(gray)
x2 = self.relu1(x1)
x3 = self.conv2(x2)
x4 = self.relu2(x3)
x5 = self.conv3(x4)
x6 = self.relu3(x5)
x7 = self.conv4(x6)
x8 = self.relu4(x7)
x9 = self.conv5(x8)
x10 = self.relu5(x9)
x11 = self.conv6(x10)
x12 = self.relu6(x11)
x13 = self.conv7(x12)
x14 = self.relu7(x13)
x15 = self.conv8(x14)
x16 = self.relu8(x15)
x17 = self.conv9(x16)
x18 = self.relu9(x17)
x19 = self.conv10(x18)
x20 = self.relu10(x19)
x21 = self.conv11(x20)
x22 = self.relu11(x21)
x23 = self.conv12(x22)
x24 = self.relu12(x23)
x25 = self.conv13(x24)
x26 = self.relu13(x25)
# 解码器
x27 = self.conv14(x26)
x28 = self.relu14(x27)
x29 = self.conv15(x28)
x30 = self.relu15(x29)
x31 = self.conv16(x30)
x32 = self.relu16(x31)
x33 = self.conv17(x32)
x34 = self.relu17(x33)
x35 = self.conv18(x34)
x36 = self.relu18(x35)
x37 = self.conv19(x36)
x38 = self.relu19(x37)
x39 = self.conv20(x38)
x40 = self.relu20(x39)
x41 = self.conv21(x40)
return x41
# 定义评价模型
class ColorizationModel:
def __init__(self, model_path):
self.net = ColorizationNet()
self.net.load_state_dict(torch.load(model_path))
self.net.eval()
# 定义预处理函数
self.preprocess = transforms.Compose([
transforms.Resize(256),
transforms.CenterCrop(256),
transforms.ToTensor(),
transforms.Normalize(mean=[0.5], std=[0.5])
])
def evaluate(self, gray_path, color_path):
# 加载图片
gray_img = Image.open(gray_path).convert('L')
color_img = Image.open(color_path).convert('RGB')
# 预处理
gray_tensor = self.preprocess(gray_img)
color_tensor = self.preprocess(color_img)
# 扩展维度
gray_tensor = gray_tensor.unsqueeze(0)
color_tensor = color_tensor.unsqueeze(0)
# 生成彩色图片
with torch.no_grad():
pred = self.net(gray_tensor)
pred = torch.tanh(pred)
pred = pred / 2 + 0.5
pred = pred.squeeze(0).permute(1, 2, 0).numpy()
# 计算 PSNR 和 SSIM
pred = pred * 255
pred = pred.astype(np.uint8)
color_img = np.array(color_img)
psnr = self.calculate_psnr(pred, color_img)
ssim = self.calculate_ssim(pred, color_img)
return psnr, ssim
# 计算 PSNR
def calculate_psnr(self, img1, img2):
mse = np.mean((img1 - img2) ** 2)
if mse == 0:
return float('inf')
max_pixel = 255.0
psnr = 20 * np.log10(max_pixel / np.sqrt(mse))
return psnr
# 计算 SSIM
def calculate_ssim(self, img1, img2):
C1 = (0.01 * 255) ** 2
C2 = (0.03 * 255) ** 2
img1 = img1.astype(np.float64)
img2 = img2.astype(np.float64)
kernel = cv2.getGaussianKernel(11, 1.5)
window = np.outer(kernel, kernel.transpose())
mu1 = cv2.filter2D(img1, -1, window)[5:-5, 5:-5]
mu2 = cv2.filter2D(img2, -1, window)[5:-5, 5:-5]
mu1_sq = mu1 ** 2
mu2_sq = mu2 ** 2
mu1_mu2 = mu1 * mu2
sigma1_sq = cv2.filter2D(img1 ** 2, -1, window)[5:-5, 5:-5] - mu1_sq
sigma2_sq = cv2.filter2D(img2 ** 2, -1, window)[5:-5, 5:-5] - mu2_sq
sigma12 = cv2.filter2D(img1 * img2, -1, window)[5:-5, 5:-5] - mu1_mu2
ssim_map = ((2 * mu1_mu2 + C1) * (2 * sigma12 + C2)) / ((mu1_sq + mu2_sq + C1) * (sigma1_sq + sigma2_sq + C2))
return ssim_map.mean()
```
代码中的 `ColorizationNet` 定义了彩色化网络的结构,包括编码器和解码器。`ColorizationModel` 定义了评价模型,包括加载网络模型和计算 PSNR 和 SSIM 的方法。其中 `calculate_psnr` 和 `calculate_ssim` 方法分别实现了计算 PSNR 和 SSIM 的算法。在 `evaluate` 方法中,我们首先加载灰度图和彩色图,并对其进行预处理。然后使用网络对灰度图进行彩色化,并计算生成的彩色图与原图的 PSNR 和 SSIM。最后返回这两个评价指标的值。
阅读全文