猎人猎物算法优化gru参数python代码
时间: 2023-07-08 16:52:15 浏览: 103
下面是一个使用猎人猎物算法优化GRU参数的Python代码示例:
首先,我们需要定义适应度函数来衡量每个GRU参数组合的性能:
```python
def fitness(params):
# 使用给定的参数训练GRU模型并计算在验证集上的性能
model = build_gru_model(params)
model.fit(X_train, y_train, validation_data=(X_val, y_val), epochs=10, batch_size=32, verbose=0)
score = model.evaluate(X_val, y_val, verbose=0)
return score[1]
```
其中,`build_gru_model`是一个根据给定参数构建GRU模型的函数,`X_train`、`y_train`、`X_val`、`y_val`是训练集和验证集的输入和输出数据。
接下来,我们需要定义猎人猎物算法的操作,包括初始化种群、交叉、变异和选择:
```python
def init_population(n_pop, n_params):
# 随机初始化种群
return np.random.uniform(low=-1, high=1, size=(n_pop, n_params))
def crossover(parents, n_offspring):
# 从父代中选择两个个体进行交叉
idx1, idx2 = np.random.choice(len(parents), size=2, replace=False)
parent1, parent2 = parents[idx1], parents[idx2]
offspring = np.empty((n_offspring, len(parent1)))
for i in range(n_offspring):
# 交叉操作
alpha = np.random.uniform(low=-0.5, high=1.5, size=len(parent1))
offspring[i] = alpha * parent1 + (1 - alpha) * parent2
return offspring
def mutation(individual, mu, sigma):
# 对个体进行变异
for i in range(len(individual)):
if np.random.rand() < mu:
individual[i] += np.random.normal(loc=0.0, scale=sigma)
return individual
def selection(population, fitness_fn, n_parents):
# 选择适应度高的个体作为下一代的父代
fitness_values = [fitness_fn(p) for p in population]
idx = np.argsort(fitness_values)[::-1][:n_parents]
return population[idx], fitness_values[idx]
```
最后,我们可以使用以上定义的函数来执行猎人猎物算法,得到优化后的GRU参数:
```python
# 初始化种群
n_pop = 20
n_params = 10
population = init_population(n_pop, n_params)
# 设置算法参数
n_parents = 10
n_offspring = n_pop - n_parents
mu = 0.2
sigma = 0.1
best_fitness = -np.inf
best_params = None
# 迭代优化
for i in range(50):
parents, parents_fitness = selection(population, fitness, n_parents)
offspring = crossover(parents, n_offspring)
offspring = np.vstack((parents, offspring))
population = np.array([mutation(ind, mu, sigma) for ind in offspring])
population_fitness = [fitness(p) for p in population]
best_idx = np.argmax(population_fitness)
if population_fitness[best_idx] > best_fitness:
best_fitness = population_fitness[best_idx]
best_params = population[best_idx]
print("Generation %d: fitness=%.4f" % (i+1, best_fitness))
```
以上代码中,我们迭代50代,每次选择适应度高的前10个个体作为父代,使用交叉和变异产生新的个体,并选择适应度最高的个体作为当前最优个体。最终得到的`best_params`即为优化后的GRU参数组合。
阅读全文