用python编写卷积神经网络去雾模型
时间: 2024-01-26 09:49:36 浏览: 219
卷积去雾算法
好的,以下是一个简单的卷积神经网络去雾模型的示例:
首先需要导入必要的库:
```python
import tensorflow as tf
from tensorflow.keras.layers import Conv2D, Input, LeakyReLU, Lambda, Concatenate, MaxPooling2D, UpSampling2D
from tensorflow.keras.models import Model
```
接下来定义模型:
```python
def build_model():
# 输入层
input_layer = Input(shape=(None, None, 3))
# 第一层卷积
conv1 = Conv2D(filters=32, kernel_size=(3, 3), padding='same')(input_layer)
conv1 = LeakyReLU(alpha=0.2)(conv1)
# 第二层卷积
conv2 = Conv2D(filters=64, kernel_size=(3, 3), padding='same')(conv1)
conv2 = LeakyReLU(alpha=0.2)(conv2)
# 第三层卷积
conv3 = Conv2D(filters=128, kernel_size=(3, 3), padding='same')(conv2)
conv3 = LeakyReLU(alpha=0.2)(conv3)
# 第四层卷积
conv4 = Conv2D(filters=256, kernel_size=(3, 3), padding='same')(conv3)
conv4 = LeakyReLU(alpha=0.2)(conv4)
# 第五层卷积
conv5 = Conv2D(filters=512, kernel_size=(3, 3), padding='same')(conv4)
conv5 = LeakyReLU(alpha=0.2)(conv5)
# 第六层卷积
conv6 = Conv2D(filters=256, kernel_size=(3, 3), padding='same')(conv5)
conv6 = LeakyReLU(alpha=0.2)(conv6)
# 第七层卷积
conv7 = Conv2D(filters=128, kernel_size=(3, 3), padding='same')(conv6)
conv7 = LeakyReLU(alpha=0.2)(conv7)
# 第八层卷积
conv8 = Conv2D(filters=64, kernel_size=(3, 3), padding='same')(conv7)
conv8 = LeakyReLU(alpha=0.2)(conv8)
# 第九层卷积
conv9 = Conv2D(filters=32, kernel_size=(3, 3), padding='same')(conv8)
conv9 = LeakyReLU(alpha=0.2)(conv9)
# 输出层
output_layer = Conv2D(filters=3, kernel_size=(1, 1), activation='sigmoid', padding='same')(conv9)
# 定义模型
model = Model(inputs=input_layer, outputs=output_layer)
return model
```
以上模型包含9个卷积层和1个输出层。其中,每个卷积层后面都跟着一个LeakyReLU激活函数。最后的输出层使用sigmoid作为激活函数。
可以使用以下代码来编译模型:
```python
model = build_model()
model.compile(optimizer='adam', loss='mse')
```
然后你就可以使用该模型来训练和测试了。
阅读全文