解释代码: # 保存文件和权重 np.savetxt('./log/AE/train_loss_list.txt', np.array(train_loss_list)) np.savetxt('./log/AE/valid_loss_list.txt', np.array(test_loss_list)) # loss可视化 visualizer = LossVisualizer(train_loss_list, test_loss_list, "./results/AE/AE_loss.jpg") visualizer.draw() # 存储最终权值文件 torch.save(best_model_weights, './results/AE/best.pth')
时间: 2024-04-18 10:32:21 浏览: 140
这段代码用于保存训练和验证损失列表,进行损失可视化,并保存最佳模型的权重。
1.np.savetxt('./log/AE/train_loss_list.txt', np.array(train_loss_list))`: 这行代码将训练损失列表`train_loss_list`保存为文本文件`train_loss_list.txt`。使用NumPy库的`np.savetxt()`函数将NumPy数组`np.array(train_loss_list)`保存为文本文件。
2. `np.savetxt('./log/AE/valid_loss_list.txt', np.array(test_loss_list))`: 这行代码将验证损失列表`test_loss_list`保存为文本文件`valid_loss_list.txt`。同样使用NumPy库的`np.savetxt()`函数将NumPy数组`np.array(test_loss_list)`保存为文本文件。
3. `visualizer = LossVisualizer(train_loss_list, test_loss_list, "./results/AE/AE_loss.jpg")`: 这行代码创建一个`LossVisualizer`对象,将训练损失列表、验证损失列表和损失可视化结果图像的保存路径作为参数传递给构造函数。
4. `visualizer.draw()`: 调用`LossVisualizer`对象的`draw()`方法,绘制训练和验证损失的可视化图像。
5. `torch.save(best_model_weights, './results/AE/best.pth')`: 这行代码将最佳模型的权重`best_model_weights`保存为文件`best.pth`。使用PyTorch的`torch.save()`函数将模型权重保存为文件。
通过以上代码,可以保存训练和验证损失列表,生成损失可视化图像,并保存最佳模型的权重。这些操作有助于对训练过程进行记录、分析和复现。
阅读全文