YOLOX-EfficientNet模型损失函数如何改进,改进代码是什么
时间: 2024-04-29 15:26:53 浏览: 129
YOLOX-EfficientNet模型的损失函数可以通过引入一些新的惩罚项来进行改进,例如Focal Loss(焦点损失)和CIoU Loss(改进的IoU损失)。下面是一个使用CIoU Loss来改进YOLOX-EfficientNet模型的示例代码:
```python
import torch.nn as nn
class CIoULoss(nn.Module):
def __init__(self, reduction='mean'):
super(CIoULoss, self).__init__()
self.reduction = reduction
def forward(self, pred, target, weight=None):
b, _, h, w = pred.shape
pred_boxes = pred.view(b, -1, 4)
target_boxes = target.view(b, -1, 4)
pred_xy = pred_boxes[..., 0:2]
pred_wh = pred_boxes[..., 2:4]
pred_x1y1 = pred_xy - pred_wh / 2
pred_x2y2 = pred_xy + pred_wh / 2
target_xy = target_boxes[..., 0:2]
target_wh = target_boxes[..., 2:4]
target_x1y1 = target_xy - target_wh / 2
target_x2y2 = target_xy + target_wh / 2
inter_x1y1 = torch.max(pred_x1y1, target_x1y1)
inter_x2y2 = torch.min(pred_x2y2, target_x2y2)
inter_wh = inter_x2y2 - inter_x1y1
inter_wh[inter_wh < 0] = 0
inter_area = inter_wh[..., 0] * inter_wh[..., 1]
pred_area = pred_wh[..., 0] * pred_wh[..., 1]
target_area = target_wh[..., 0] * target_wh[..., 1]
union_area = pred_area + target_area - inter_area
iou = inter_area / union_area
iou = torch.clamp(iou, min=1e-6, max=1 - 1e-6)
center_distance = torch.sum((pred_xy - target_xy) ** 2, axis=-1)
diagonal_distance = torch.sum((pred_boxes[..., 2:4] - target_boxes[..., 2:4]) ** 2, axis=-1)
cious = iou - center_distance / diagonal_distance
if weight is not None:
cious = cious * weight
loss = 1 - cious
if self.reduction == 'mean':
loss = torch.mean(loss)
elif self.reduction == 'sum':
loss = torch.sum(loss)
return loss
```
在使用这个CIoULoss时,只需将其作为YOLOX-EfficientNet模型的损失函数即可:
```python
import torch.optim as optim
model = YOLOX_EfficientNet()
criterion = CIoULoss()
optimizer = optim.Adam(model.parameters(), lr=0.001)
for epoch in range(num_epochs):
for i, batch in enumerate(data_loader):
inputs, targets = batch
outputs = model(inputs)
loss = criterion(outputs, targets)
optimizer.zero_grad()
loss.backward()
optimizer.step()
```
请注意,这只是一个示例代码,您需要根据您的具体情况进行调整。
阅读全文