下一段pyflink消费kafka的代码
时间: 2024-04-30 07:24:12 浏览: 100
以下是VGG16的代码示例:
```python
import tensorflow as tf
from tensorflow.keras.layers import Input, Conv2D, MaxPooling2D, Flatten, Dense
def VGG16(input_shape=(224,224,3), num_classes=1000):
# input layer
input_tensor = Input(shape=input_shape)
# block 1
x = Conv2D(64, (3, 3), activation='relu', padding='same', name='block1_conv1')(input_tensor)
x = Conv2D(64, (3, 3), activation='relu', padding='same', name='block1_conv2')(x)
x = MaxPooling2D((2, 2), strides=(2, 2), name='block1_pool')(x)
# block 2
x = Conv2D(128, (3, 3), activation='relu', padding='same', name='block2_conv1')(x)
x = Conv2D(128, (3, 3), activation='relu', padding='same', name='block2_conv2')(x)
x = MaxPooling2D((2, 2), strides=(2, 2), name='block2_pool')(x)
# block 3
x = Conv2D(256, (3, 3), activation='relu', padding='same', name='block3_conv1')(x)
x = Conv2D(256, (3, 3), activation='relu', padding='same', name='block3_conv2')(x)
x = Conv2D(256, (3, 3), activation='relu', padding='same', name='block3_conv3')(x)
x = MaxPooling2D((2, 2), strides=(2, 2), name='block3_pool')(x)
# block 4
x = Conv2D(512, (3, 3), activation='relu', padding='same', name='block4_conv1')(x)
x = Conv2D(512, (3, 3), activation='relu', padding='same', name='block4_conv2')(x)
x = Conv2D(512, (3, 3), activation='relu', padding='same', name='block4_conv3')(x)
x = MaxPooling2D((2, 2), strides=(2, 2), name='block4_pool')(x)
# block 5
x = Conv2D(512, (3, 3), activation='relu', padding='same', name='block5_conv1')(x)
x = Conv2D(512, (3, 3), activation='relu', padding='same', name='block5_conv2')(x)
x = Conv2D(512, (3, 3), activation='relu', padding='same', name='block5_conv3')(x)
x = MaxPooling2D((2, 2), strides=(2, 2), name='block5_pool')(x)
# classification layer
x = Flatten(name='flatten')(x)
x = Dense(4096, activation='relu', name='fc1')(x)
x = Dense(4096, activation='relu', name='fc2')(x)
output_tensor = Dense(num_classes, activation='softmax', name='predictions')(x)
model = tf.keras.Model(input_tensor, output_tensor, name='vgg16')
return model
```
此代码实现了VGG16神经网络结构,包括5个卷积块和一个全连接层。每个卷积块包括数个卷积层和一个最大池化层,全连接层包括2个4096个神经元的隐藏层和一个输出层。输出层的激活函数为softmax,因为VGG16是用于分类任务的。
阅读全文