基于三国人物关系数据,构建三国人物关系图。图的顶点为三国人物。边为人物关系(如儿子、义弟、主公)。本题需要实现在图结构上做的各种人物关系查询。人物的属性包括:人名、所属国。 如刘备(刘备,蜀国) 【功能】 1.基于邻接表构建三国人物关系图,并能输出展示邻接表,保存在文件”TRKGraph.txt”中。文件格式如下: 刘备-->张飞--->关羽--->赵云 注意:图的构建,应该先整理图中的顶点数据,即要整理所有三国人物数据作为图顶点。 2.统计人物关系数量最多的前10个三国人物及其所属国。 3.输入2个人物,查找2个人物之间所有关系。基于图的深度遍历,展示关系路径。并能说明最短路径是哪条。答辩时候展示:有关系的人物。无关系的人物。 4.智能问答。输入荀彧的主公的儿子是谁?能输出关系路径,并给出答案。

时间: 2024-04-04 14:32:45 浏览: 24
很抱歉,作为一个 AI,我没有本地存储数据的能力,也没有文件读写的权限。但是我可以为您提供一些实现思路和代码示例。 【实现思路】 1. 建立三国人物关系的图。可以使用邻接表来表示图。每个顶点为一个人物,每条边表示两个人物之间的关系。边的类型可以使用字符串来表示(如“儿子”、“义弟”、“主公”等)。 2. 统计人物关系数量。可以使用图的深度优先遍历算法,遍历所有顶点和边,统计每个顶点的出边数量。然后按照出边数量从大到小排序,取前10个顶点作为结果。 3. 查找两个人物之间的关系。可以使用图的深度优先遍历算法,从一个人物开始,遍历所有相邻的顶点,直到找到另一个人物。可以记录遍历路径,并输出路径信息。最短路径可以使用广度优先遍历算法来实现。 4. 智能问答。可以使用图的深度优先遍历算法,从一个人物开始,遍历所有相邻的顶点,直到找到目标人物。可以记录遍历路径,并输出路径信息和答案。 【示例代码】 以下是一个简单的示例代码,实现了图的构建、邻接表的输出和深度优先遍历算法。您可以根据自己的需求进行修改和扩展。 ```python class Vertex: def __init__(self, name, country): self.name = name self.country = country self.adjacent = {} def add_neighbor(self, vertex, relation): self.adjacent[vertex] = relation def get_connections(self): return self.adjacent.keys() def get_relation(self, vertex): return self.adjacent[vertex] def __str__(self): return self.name + ' (' + self.country + ')' class Graph: def __init__(self): self.vertices = {} def add_vertex(self, vertex): self.vertices[vertex.name] = vertex def get_vertex(self, name): return self.vertices.get(name) def add_edge(self, v1, v2, relation): if v1 not in self.vertices: self.add_vertex(Vertex(v1)) if v2 not in self.vertices: self.add_vertex(Vertex(v2)) self.vertices[v1].add_neighbor(self.vertices[v2], relation) def get_vertices(self): return self.vertices.keys() def __iter__(self): return iter(self.vertices.values()) def build_graph(): # 构建三国人物关系图 graph = Graph() # 添加顶点 graph.add_vertex(Vertex('刘备', '蜀国')) graph.add_vertex(Vertex('张飞', '蜀国')) graph.add_vertex(Vertex('关羽', '蜀国')) graph.add_vertex(Vertex('赵云', '蜀国')) graph.add_vertex(Vertex('曹操', '魏国')) graph.add_vertex(Vertex('曹丕', '魏国')) graph.add_vertex(Vertex('司马懿', '魏国')) graph.add_vertex(Vertex('孙权', '吴国')) graph.add_vertex(Vertex('周瑜', '吴国')) graph.add_vertex(Vertex('诸葛亮', '蜀国')) graph.add_vertex(Vertex('荀彧', '魏国')) # 添加边 graph.add_edge('刘备', '张飞', '义弟') graph.add_edge('刘备', '关羽', '义兄') graph.add_edge('关羽', '赵云', '将军') graph.add_edge('曹操', '曹丕', '儿子') graph.add_edge('曹操', '司马懿', '谋士') graph.add_edge('孙权', '周瑜', '同盟') graph.add_edge('孙权', '诸葛亮', '敌国谋士') graph.add_edge('荀彧', '曹操', '谋士') graph.add_edge('荀彧', '曹丕', '主公之子') return graph def show_adjacency_list(graph): # 输出邻接表 with open('TRKGraph.txt', 'w') as f: for v in graph: f.write(str(v) + ' --> ') for neighbor in v.get_connections(): f.write(str(neighbor) + '(' + v.get_relation(neighbor) + ')' + ' ---> ') f.write('\n') def dfs(graph, start, end, path=None): # 深度优先遍历,查找两个人物之间的关系 if path is None: path = [] path = path + [start] if start == end: return path for vertex in graph.get_vertex(start).get_connections(): if vertex.name not in path: newpath = dfs(graph, vertex.name, end, path) if newpath: return newpath return None if __name__ == '__main__': # 构建三国人物关系图 graph = build_graph() # 输出邻接表 show_adjacency_list(graph) # 查找两个人物之间的关系 print(dfs(graph, '刘备', '赵云')) ```

相关推荐

application/x-rar
/* * 基于邻接边表实现图的顶点结构 */ package dsa; public class Vertex_List implements Vertex { //变量 protected Object info;//当前顶点中存放的数据元素 protected Position vPosInV;//当前顶点在所属的图的顶点表V中的位置 protected List outEdges;//关联边表:存放以当前顶点为尾的所有边(的位置) protected List inEdges;//关联边表:存放以当前顶点为头的所有边(的位置) protected int status;//(在遍历图等操作过程中)顶点的状态 protected int dStamp;//时间标签:DFS过程中该顶点被发现时的时刻 protected int fStamp;//时间标签:DFS过程中该顶点被访问结束时的时刻 protected int distance;//到指定起点的距离:BFS、Dijkstra等算法所确定该顶点到起点的距离 protected Vertex bfsParent;//在最短距离树(BFS或BestFS)中的父亲 //构造方法:在图G中引入一个属性为x的新顶点 public Vertex_List(Graph G, Object x) { info = x;//数据元素 vPosInV = G.insert(this);//当前顶点在所属的图的顶点表V中的位置 outEdges = new List_DLNode();//出边表 inEdges = new List_DLNode();//入边表 status = UNDISCOVERED; dStamp = fStamp = Integer.MAX_VALUE; distance = Integer.MAX_VALUE; bfsParent = null; } //返回当前顶点的信息 public Object getInfo() { return info; } //将当前顶点的信息更新为x,并返回原先的信息 public Object setInfo(Object x) { Object e = info; info = x; return e; } //返回当前顶点的出、入度 public int outDeg() { return outEdges.getSize(); } public int inDeg() { return inEdges.getSize(); } //返回当前顶点所有关联边、关联边位置的迭代器 public Iterator inEdges() { return inEdges.elements(); } public Iterator inEdgePositions() { return inEdges.positions(); } public Iterator outEdges() { return outEdges.elements(); } public Iterator outEdgePositions() { return outEdges.positions(); } //取当前顶点在所属的图的顶点集V中的位置 public Position getVPosInV() { return vPosInV; } //读取、设置顶点的状态(DFS + BFS) public int getStatus() { return status; } public int setStatus(int s) { int ss = status; status = s; return ss; } //读取、设置顶点的时间标签(DFS) public int getDStamp() { return dStamp; } public int setDStamp(int s) { int ss = dStamp; dStamp = s; return ss; } public int getFStamp() { return fStamp; } public int setFStamp(int s) { int ss = fStamp; fStamp = s; return ss; } //读取、设置顶点至起点的最短距离(BFS) public int getDistance() { return distance; } public int setDistance(int s) { int ss = distance; distance = s; return ss; } //读取、设置顶点在的DFS、BFS、BestFS或MST树中的父亲 public Vertex getBFSParent() { return bfsParent; } public Vertex setBFSParent(Vertex s) { Vertex ss = bfsParent; bfsParent = s; return ss; } }

最新推荐

recommend-type

基于SpringMVC+Hibernate+AngularJs前后端分离的选课系统+源码+文档+界面展示(毕业设计&课程设计)

基于SpringMVC+Hibernate+AngularJs前后端分离的选课系统+源码+文档+界面展示,适合毕业设计、课程设计、项目开发。项目源码已经过严格测试,可以放心参考并在此基础上延申使用~ 基于SpringMVC+Hibernate+AngularJs前后端分离的选课系统+源码+文档+界面展示,适合毕业设计、课程设计、项目开发。项目源码已经过严格测试,可以放心参考并在此基础上延申使用~ 基于SpringMVC+Hibernate+AngularJs前后端分离的选课系统+源码+文档+界面展示,适合毕业设计、课程设计、项目开发。项目源码已经过严格测试,可以放心参考并在此基础上延申使用~ 项目简介: 本选课系统开源协议基于GPL协议,仅用作交流学习用途。 本系统采用了前后端分离的开发模式,后端采用Springmvc+Hibernate框架。 前端使用AngularJs+JQuery+Bootstrap开发,并且使用前端构建工具Gulp。
recommend-type

51单片机模拟汽车左右转向灯控制系统的源代码和仿真电路

免费开源《基于51单片机的模拟汽车左右转向灯控制系统》的源代码和仿真电路,含c程序源码、Proteus仿真电路。 //功能:汽车左右转向灯程序 #include <REGX51.H> //包含头文件REGX51.H sbit LEDL1=P0^0; //定义P0.0引脚位名称为LEDL1,左前转向灯 sbit LEDL2=P0^1; //定义P0.1引脚位名称为LEDL2,左后转向灯 sbit LEDR1=P0^2; //定义P0.2引脚位名称为LEDR1,右前转向灯 sbit LEDR2=P0^3; //定义P0.3引脚位名称为LEDR2,右后转向灯 sbit S1=P1^0; //定义P1.0引脚位名称为S1,S1为0,左转向灯闪烁 sbit S2=P1^1; //定义P1.1引脚位名称为S2,S2为0,右转向灯闪烁 //函数名:delay //函数功能:实现软件延时 //形式参数:无符号整型变量i //返回值:无 void delay(unsigned int i) { wh
recommend-type

windows hot key

windows 下常用的热键脚本配置
recommend-type

51CTO学院-《Java编程思想》精讲视频教程(上部).docx

51CTO学院-《Java编程思想》精讲视频教程(上部).docx
recommend-type

JAVA2课程教学大纲.doc

JAVA2课程教学大纲.doc
recommend-type

京瓷TASKalfa系列维修手册:安全与操作指南

"该资源是一份针对京瓷TASKalfa系列多款型号打印机的维修手册,包括TASKalfa 2020/2021/2057,TASKalfa 2220/2221,TASKalfa 2320/2321/2358,以及DP-480,DU-480,PF-480等设备。手册标注为机密,仅供授权的京瓷工程师使用,强调不得泄露内容。手册内包含了重要的安全注意事项,提醒维修人员在处理电池时要防止爆炸风险,并且应按照当地法规处理废旧电池。此外,手册还详细区分了不同型号产品的打印速度,如TASKalfa 2020/2021/2057的打印速度为20张/分钟,其他型号则分别对应不同的打印速度。手册还包括修订记录,以确保信息的最新和准确性。" 本文档详尽阐述了京瓷TASKalfa系列多功能一体机的维修指南,适用于多种型号,包括速度各异的打印设备。手册中的安全警告部分尤为重要,旨在保护维修人员、用户以及设备的安全。维修人员在操作前必须熟知这些警告,以避免潜在的危险,如不当更换电池可能导致的爆炸风险。同时,手册还强调了废旧电池的合法和安全处理方法,提醒维修人员遵守地方固体废弃物法规。 手册的结构清晰,有专门的修订记录,这表明手册会随着设备的更新和技术的改进不断得到完善。维修人员可以依靠这份手册获取最新的维修信息和操作指南,确保设备的正常运行和维护。 此外,手册中对不同型号的打印速度进行了明确的区分,这对于诊断问题和优化设备性能至关重要。例如,TASKalfa 2020/2021/2057系列的打印速度为20张/分钟,而TASKalfa 2220/2221和2320/2321/2358系列则分别具有稍快的打印速率。这些信息对于识别设备性能差异和优化工作流程非常有用。 总体而言,这份维修手册是京瓷TASKalfa系列设备维修保养的重要参考资料,不仅提供了详细的操作指导,还强调了安全性和合规性,对于授权的维修工程师来说是不可或缺的工具。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【进阶】入侵检测系统简介

![【进阶】入侵检测系统简介](http://www.csreviews.cn/wp-content/uploads/2020/04/ce5d97858653b8f239734eb28ae43f8.png) # 1. 入侵检测系统概述** 入侵检测系统(IDS)是一种网络安全工具,用于检测和预防未经授权的访问、滥用、异常或违反安全策略的行为。IDS通过监控网络流量、系统日志和系统活动来识别潜在的威胁,并向管理员发出警报。 IDS可以分为两大类:基于网络的IDS(NIDS)和基于主机的IDS(HIDS)。NIDS监控网络流量,而HIDS监控单个主机的活动。IDS通常使用签名检测、异常检测和行
recommend-type

轨道障碍物智能识别系统开发

轨道障碍物智能识别系统是一种结合了计算机视觉、人工智能和机器学习技术的系统,主要用于监控和管理铁路、航空或航天器的运行安全。它的主要任务是实时检测和分析轨道上的潜在障碍物,如行人、车辆、物体碎片等,以防止这些障碍物对飞行或行驶路径造成威胁。 开发这样的系统主要包括以下几个步骤: 1. **数据收集**:使用高分辨率摄像头、雷达或激光雷达等设备获取轨道周围的实时视频或数据。 2. **图像处理**:对收集到的图像进行预处理,包括去噪、增强和分割,以便更好地提取有用信息。 3. **特征提取**:利用深度学习模型(如卷积神经网络)提取障碍物的特征,如形状、颜色和运动模式。 4. **目标
recommend-type

小波变换在视频压缩中的应用

"多媒体通信技术视频信息压缩与处理(共17张PPT).pptx" 多媒体通信技术涉及的关键领域之一是视频信息压缩与处理,这在现代数字化社会中至关重要,尤其是在传输和存储大量视频数据时。本资料通过17张PPT详细介绍了这一主题,特别是聚焦于小波变换编码和分形编码两种新型的图像压缩技术。 4.5.1 小波变换编码是针对宽带图像数据压缩的一种高效方法。与离散余弦变换(DCT)相比,小波变换能够更好地适应具有复杂结构和高频细节的图像。DCT对于窄带图像信号效果良好,其变换系数主要集中在低频部分,但对于宽带图像,DCT的系数矩阵中的非零系数分布较广,压缩效率相对较低。小波变换则允许在频率上自由伸缩,能够更精确地捕捉图像的局部特征,因此在压缩宽带图像时表现出更高的效率。 小波变换与傅里叶变换有本质的区别。傅里叶变换依赖于一组固定频率的正弦波来表示信号,而小波分析则是通过母小波的不同移位和缩放来表示信号,这种方法对非平稳和局部特征的信号描述更为精确。小波变换的优势在于同时提供了时间和频率域的局部信息,而傅里叶变换只提供频率域信息,却丢失了时间信息的局部化。 在实际应用中,小波变换常常采用八带分解等子带编码方法,将低频部分细化,高频部分则根据需要进行不同程度的分解,以此达到理想的压缩效果。通过改变小波的平移和缩放,可以获取不同分辨率的图像,从而实现按需的图像质量与压缩率的平衡。 4.5.2 分形编码是另一种有效的图像压缩技术,特别适用于处理不规则和自相似的图像特征。分形理论源自自然界的复杂形态,如山脉、云彩和生物组织,它们在不同尺度上表现出相似的结构。通过分形编码,可以将这些复杂的形状和纹理用较少的数据来表示,从而实现高压缩比。分形编码利用了图像中的分形特性,将其转化为分形块,然后进行编码,这在处理具有丰富细节和不规则边缘的图像时尤其有效。 小波变换和分形编码都是多媒体通信技术中视频信息压缩的重要手段,它们分别以不同的方式处理图像数据,旨在减少存储和传输的需求,同时保持图像的质量。这两种技术在现代图像处理、视频编码标准(如JPEG2000)中都有广泛应用。