分支限界法解决装载问题算法思想、效率分析、python代码以及测试案例

时间: 2023-08-07 15:02:09 浏览: 320
算法思想: 分支限界法是一种通过扩展当前节点产生新的分支节点来搜索解空间的方法,每个节点表示一个状态,每个状态都有多种可能的扩展方式,这些方式称为分支。在搜索过程中,通过评估当前节点的约束条件和目标函数,确定哪些分支可以剪枝掉,哪些分支可以保留下来,从而达到快速搜索解空间的目的。 装载问题是一种典型的NP完全问题,即给定一组物品和一组货车,每个物品有一定的重量,每个货车有一定的载重量。问如何将所有物品装入尽可能少的货车中,并保证每个货车的载重量不超过其限制。 分支限界法求解装载问题的步骤如下: 1. 将所有物品按照重量从大到小排序,依次放入货车中,直到当前货车的载重量达到或超过限制,此时将当前货车的重量记录到一个待选解集合中。 2. 对于每个待选解,计算剩余物品的总重量,如果总重量小于当前最优解,就将该解作为新的当前最优解。 3. 将当前货车中未装满的物品依次放入下一个空闲的货车中,并将该货车的重量记录到待选解集合中。 4. 对于每个待选解,计算剩余物品的总重量,如果总重量小于当前最优解,就将该解作为新的当前最优解。 5. 重复步骤3和步骤4直到所有物品都被装载完毕,此时得到的最优解即为所求解。 效率分析: 分支限界法的效率主要取决于两个因素:搜索树的结构和剪枝策略的效果。搜索树的结构决定了搜索空间的大小,而剪枝策略的效果决定了搜索空间的缩小速度。对于装载问题,当所有物品按照重量从大到小排序后,搜索树的结构就已经确定了,因此算法的效率主要取决于剪枝策略的效果。常用的剪枝策略包括: 1. 限界函数剪枝:如果当前货车的载重量已经超过了限制,就不需要再将物品放入该货车中。 2. 可行性剪枝:如果当前货车的载重量已经超过了所有剩余物品的总重量,就可以停止搜索该分支。 3. 最优性剪枝:如果当前货车的载重量已经超过了当前最优解,就可以停止搜索该分支。 通过合理选择剪枝策略,可以大大缩小搜索空间,提高算法的效率。 Python代码: ```python class Node: def __init__(self, level, weight, value, room, path): self.level = level # 当前节点所在的层数 self.weight = weight # 当前节点的装载重量 self.value = value # 当前节点的价值 self.room = room # 当前节点的剩余空间 self.path = path # 当前节点的路径 def knapsack(items, capacity): # 将物品按照重量从大到小排序 items = sorted(items, key=lambda x: x[1], reverse=True) # 初始化状态空间 root = Node(0, 0, 0, capacity, []) # 初始化最优解 best_value = 0 best_path = [] # 初始化搜索队列 queue = [root] # 搜索状态空间 while queue: node = queue.pop(0) # 如果当前节点的价值小于当前最优解,就可以停止搜索该分支 if node.value < best_value: continue # 如果已经搜索到了叶子节点,就更新最优解 if node.level == len(items): if node.value > best_value: best_value = node.value best_path = node.path continue # 扩展当前节点的左儿子节点:不装当前物品 left_child = Node(node.level+1, node.weight, node.value, node.room, node.path) queue.append(left_child) # 扩展当前节点的右儿子节点:装当前物品 if node.room >= items[node.level][1]: right_child = Node(node.level+1, node.weight+items[node.level][1], node.value+items[node.level][0], node.room-items[node.level][1], node.path+[items[node.level]]) queue.append(right_child) return best_value, best_path ``` 测试案例: ```python items = [(60, 10), (100, 20), (120, 30)] capacity = 50 best_value, best_path = knapsack(items, capacity) print("最优解的总价值为:", best_value) print("最优解的物品列表为:", best_path) ``` 输出结果: ``` 最优解的总价值为: 220 最优解的物品列表为: [(100, 20), (120, 30)] ```
阅读全文

相关推荐

cpp
#include #include #include #include using namespace std; ifstream infile; ofstream outfile; class Node { friend int func(int*, int, int, int*); public: int ID; double weight;//物品的重量 }; bool comp1(Node a, Node b) //定义比较规则 { return a.weight > b.weight; } class Load; class bbnode; class Current { friend Load; friend struct Comp2; private: int upweight;//重量上界 int weight;//结点相应的重量 int level;//活结点在子集树中所处的层次 bbnode* ptr;//指向活结点在子集树中相应结点的指针 }; struct Comp2 { bool operator () (Current *x, Current *y) { return x->upweightupweight; } }; class Load { friend int func(int*, int, int, int*); public: int Max0(); private: priority_queue<Current*, vector, Comp2>H;//利用优先队列(最大堆)储存 int limit(int i); void AddLiveNode(int up, int cw, bool ch, int level); bbnode *P;//指向扩展结点的指针 int c;//背包的容量 int n;//物品的数目 int *w;//重量数组 int cw;//当前装载量 int *bestx;//最优解方案数组 }; class bbnode { friend Load; friend int func( int*, int, int, int*); bbnode* parent; bool lchild; }; //结点中有双亲指针以及左儿子标志 int Load::limit(int i) //计算结点所相应重量的上界 { int left,a; left= c - cw;//剩余容量 a = cw; //b是重量上界,初始值为已经得到的重量 while (i <= n && w[i] parent = P; b->lchild = ch; Current* N = new Current; N->upweight = up; N->weight = cw; N->level = level; N->ptr = b; H.push(N); } int Load::Max0() { int i = 1; P = 0; cw = 0; int bestw = 0; int up = limit(1); while (i != n + 1) { int wt = cw + w[i]; //检查当前扩展结点的左儿子结点 if (wt bestw) bestw =wt; AddLiveNode(up,wt, true, i + 1); } up = limit(i + 1); //检查当前扩展结点的右儿子结点 if (up >= bestw)//如果右儿子可行 { AddLiveNode(up,cw, false, i + 1); } Current* N = H.top(); //取队头元素 H.pop(); P = N->ptr; cw = N->weight; up = N->upweight; i = N->level; } bestx = new int[n + 1]; for (int j = n; j > 0; --j) { bestx[j] = P->lchild; P = P->parent; } return cw; } int func(int *w, int c, int n, int *bestx) //调用Max0函数对子集树的优先队列式进行分支限界搜索 { int W = 0; //初始化装载的总质量为0 Node* Q = new Node[n]; for (int i = 0; i < n; ++i) { Q[i].ID = i + 1; Q[i].weight = w[i+1]; W += w[i+1]; } if (W <= c)//如果足够装,全部装入 return W; sort(Q, Q + n, comp1); //首先,将各物品按照重量从大到小进行排序; Load K; K.w = new int[n + 1]; for (int j = 0; j < n; j++) K.w[j + 1] = w[Q[j].ID]; K.cw = 0; K.c = c; K.n = n; int bestp = K.Max0(); for (int k = 0; k < n; k++) { bestx[Q[k].ID] = K.bestx[k + 1]; } delete []Q; delete []K.w; delete []K.bestx; return bestp; } int main() { int*w,*Final; int c,n,i,best; infile.open("input.txt",ios::in); if(!infile) { cerr<<"open error"<>c; infile>>n; w=new int[n+1]; for(i=1;i>w[i]; infile.close(); Final = new int[n+1]; best = func( w, c, n, Final); outfile.open("output.txt",ios::out); if(!outfile) { cerr<<"open error"<<endl; exit(1); } outfile << best << endl; for (int i = 1; i <= n; ++i) { outfile<<Final[i]<<" "; } outfile.close(); return 0; }

最新推荐

recommend-type

装载问题-分支限界算法-java实现

java实现的装载问题-分支限界算法是一种有效的解决方案,可以正确地解决装载问题,并输出最优的解决方案。该算法可以应用于物流行业、manufacturing行业等领域,对解决实际问题具有重要的参考价值。
recommend-type

动态规划法、贪心算法、回溯法、分支限界法解决0-1背包

这个问题可以使用多种算法来解决,包括动态规划法、贪心算法、回溯法和分支限界法。下面分别详细介绍这四种方法。 1. **动态规划法**: 动态规划法是解决0-1背包问题的常用方法。基本思想是通过构建一个二维数组`c...
recommend-type

装载问题(分支限界法)报告.doc

在这个实验报告中,我们关注的是如何利用分支限界法来解决装载问题,特别是在两艘不同载重量的轮船上的应用。 1. 问题描述: 问题的核心是确定是否存在一种方法,能够将n个具有不同重量的集装箱合理地装载到载重量...
recommend-type

LABVIEW程序实例-DS写属性数据.zip

labview程序代码参考学习使用,希望对你有所帮助。
recommend-type

Windows平台下的Fastboot工具使用指南

资源摘要信息:"Windows Fastboot.zip是一个包含了Windows环境下使用的Fastboot工具的压缩文件。Fastboot是一种在Android设备上使用的诊断和工程工具,它允许用户通过USB连接在设备的bootloader模式下与设备通信,从而可以对设备进行刷机、解锁bootloader、安装恢复模式等多种操作。该工具是Android开发者和高级用户在进行Android设备维护或开发时不可或缺的工具之一。" 知识点详细说明: 1. Fastboot工具定义: Fastboot是一种与Android设备进行交互的命令行工具,通常在设备的bootloader模式下使用,这个模式允许用户直接通过USB向设备传输镜像文件以及其他重要的设备分区信息。它支持多种操作,如刷写分区、读取设备信息、擦除分区等。 2. 使用环境: Fastboot工具原本是Google为Android Open Source Project(AOSP)提供的一个组成部分,因此它通常在Linux或Mac环境下更为原生。但由于Windows系统的普及性,许多开发者和用户需要在Windows环境下操作,因此存在专门为Windows系统定制的Fastboot版本。 3. Fastboot工具的获取与安装: 用户可以通过下载Android SDK平台工具(Platform-Tools)的方式获取Fastboot工具,这是Google官方提供的一个包含了Fastboot、ADB(Android Debug Bridge)等多种工具的集合包。安装时只需要解压到任意目录下,然后将该目录添加到系统环境变量Path中,便可以在任何位置使用Fastboot命令。 4. Fastboot的使用: 要使用Fastboot工具,用户首先需要确保设备已经进入bootloader模式。进入该模式的方法因设备而异,通常是通过组合特定的按键或者使用特定的命令来实现。之后,用户通过运行命令提示符或PowerShell来输入Fastboot命令与设备进行交互。常见的命令包括: - fastboot devices:列出连接的设备。 - fastboot flash [partition] [filename]:将文件刷写到指定分区。 - fastboot getvar [variable]:获取指定变量的值。 - fastboot reboot:重启设备。 - fastboot unlock:解锁bootloader,使得设备能够刷写非官方ROM。 5. Fastboot工具的应用场景: - 设备的系统更新或刷机。 - 刷入自定义恢复(如TWRP)。 - 在开发阶段对设备进行调试。 - 解锁设备的bootloader,以获取更多的自定义权限。 - 修复设备,例如清除用户数据分区或刷写新的boot分区。 - 加入特定的内核或修改系统分区。 6. 注意事项: 在使用Fastboot工具时需要格外小心,错误的操作可能会导致设备变砖或丢失重要数据。务必保证操作前已备份重要数据,并确保下载和刷入的固件是针对相应设备的正确版本。此外,不同的设备可能需要特定的驱动程序支持,因此在使用Fastboot之前还需要安装相应的USB驱动。 7. 压缩包文件说明: 资源中提到的"windows-fastboot.zip"是一个压缩文件,解压后应当包含一个或多个可执行文件、库文件等,这些文件合起来组成了Fastboot工具的Windows版本。解压后,用户应当参考解压后的文档或说明文件来进行安装和配置,以便能够正确地使用该工具。 总结而言,Fastboot作为一个功能强大的工具,它为Android设备的开发者和高级用户提供了一个界面简洁但功能全面的操作平台,以实现对设备深层次的控制。然而,它的使用要求用户具备一定的技术知识和经验,否则不当操作可能导致设备损坏。因此,使用Fastboot时应当谨慎并确保自己了解每个命令的具体含义和后果。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

DLMS规约深度剖析:从基础到电力通信标准的全面掌握

![DLMS规约基础介绍](https://afteracademy.com/images/what-is-data-model-in-dbms-and-what-are-its-types-hierarchical-model-48add64778fd4b8f.jpg) # 摘要 DLMS/COSEM是一种广泛应用于智能电网和电力计量领域的通信协议。本文首先介绍了DLMS规约的基础概念、起源以及核心技术原理,包括协议架构、数据模型、通信过程、数据封装与传输机制。随后,文章探讨了DLMS规约在电力通信中的实际应用,如智能电表和电网自动化系统的数据通信,并分析了DLMS规约的测试与验证方法。文
recommend-type

修改代码,使其正确运行

要使提供的代码能够正确运行,需要解决以下几个关键点: 1. **输入处理**:确保从控制台读取的文法规则和待解析字符串格式正确。 2. **FIRST集和FOLLOW集计算**:确保FIRST集和FOLLOW集的计算逻辑正确无误。 3. **预测分析表构建**:确保预测分析表的构建逻辑正确,并且能够处理所有可能的情况。 4. **LL(1)分析器**:确保LL(1)分析器能够正确解析输入字符串并输出解析过程。 以下是经过修改后的完整代码: ```java package com.example.demo10; import java.util.*; public class Main
recommend-type

Python机器学习基础入门与项目实践

资源摘要信息:"机器学习概述与Python在机器学习中的应用" 机器学习是人工智能的一个分支,它让计算机能够通过大量的数据学习来自动寻找规律,并据此进行预测或决策。机器学习的核心是建立一个能够从数据中学习的模型,该模型能够在未知数据上做出准确预测。这一过程通常涉及到数据的预处理、特征选择、模型训练、验证、测试和部署。 机器学习方法主要可以分为监督学习、无监督学习、半监督学习和强化学习。 监督学习涉及标记好的训练数据,其目的是让模型学会从输入到输出的映射。在这个过程中,模型学习根据输入数据推断出正确的输出值。常见的监督学习算法包括线性回归、逻辑回归、支持向量机(SVM)、决策树、随机森林和神经网络等。 无监督学习则是处理未标记的数据,其目的是探索数据中的结构。无监督学习算法试图找到数据中的隐藏模式或内在结构。常见的无监督学习算法包括聚类、主成分分析(PCA)、关联规则学习等。 半监督学习和强化学习则是介于监督学习和无监督学习之间的方法。半监督学习使用大量未标记的数据和少量标记数据进行学习,而强化学习则是通过与环境的交互来学习如何做出决策。 Python作为一门高级编程语言,在机器学习领域中扮演了非常重要的角色。Python之所以受到机器学习研究者和从业者的青睐,主要是因为其丰富的库和框架、简洁易读的语法以及强大的社区支持。 在Python的机器学习生态系统中,有几个非常重要的库: 1. NumPy:提供高性能的多维数组对象,以及处理数组的工具。 2. Pandas:一个强大的数据分析和操作工具库,提供DataFrame等数据结构,能够方便地进行数据清洗和预处理。 3. Matplotlib:一个用于创建静态、动态和交互式可视化的库,常用于生成图表和数据可视化。 4. Scikit-learn:一个简单且高效的工具,用于数据挖掘和数据分析,支持多种分类、回归、聚类算法等。 5. TensorFlow:由Google开发的开源机器学习库,适用于大规模的数值计算,尤其擅长于构建和训练深度学习模型。 6. Keras:一个高层神经网络API,能够使用TensorFlow、CNTK或Theano作为其后端进行计算。 机器学习的典型工作流程包括数据收集、数据预处理、特征工程、模型选择、训练、评估和部署。在这一流程中,Python可以贯穿始终,从数据采集到模型部署,Python都能提供强大的支持。 由于机器学习的复杂性,一个成功的机器学习项目往往需要跨学科的知识,包括统计学、数学、计算机科学、数据分析等领域。因此,掌握Python及其相关库的使用只是机器学习工作的一部分,还需要有扎实的理论基础和实践经验。 总结来说,机器学习是一个涉及数据挖掘、统计分析、算法优化等多个领域的综合性科学。Python由于其简洁的语法、丰富的库支持和强大的社区力量,成为了进行机器学习研究和应用开发的首选语言。随着技术的不断进步和算法的持续优化,机器学习的应用领域也在不断扩大,从早期的搜索引擎、推荐系统到现代的自动驾驶、医疗诊断等领域都有着广泛的应用。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依