PyTorch中的ConvLSTM2d层对特征图进行处理,结合卷积和LSTM的方式进行时空建模,从而提取出更加具有时空信息的特征 代码块
时间: 2024-06-10 09:06:16 浏览: 342
可以参考下面的代码示例:
```python
import torch
import torch.nn as nn
class ConvLSTMCell(nn.Module):
def __init__(self, input_channels, hidden_channels, kernel_size):
super(ConvLSTMCell, self).__init__()
padding = kernel_size // 2
self.conv = nn.Conv2d(input_channels + hidden_channels,
4 * hidden_channels, kernel_size, 1, padding)
def forward(self, x, hidden):
hx, cx = hidden # (batch, hidden_channels, height, width)
x = torch.cat([x, hx], dim=1) # Concatenate along channel axis
gates = self.conv(x)
# Split tensor along channel axis into 4 parts
ingate, forgetgate, cellgate, outgate = gates.chunk(4, dim=1)
ingate = torch.sigmoid(ingate)
forgetgate = torch.sigmoid(forgetgate)
cellgate = torch.tanh(cellgate)
outgate = torch.sigmoid(outgate)
cy = (forgetgate * cx) + (ingate * cellgate)
hy = outgate * torch.tanh(cy)
return hy, cy
class ConvLSTM(nn.Module):
def __init__(self, input_channels, hidden_channels, kernel_size, num_layers):
super(ConvLSTM, self).__init__()
self.input_channels = input_channels
self.hidden_channels = hidden_channels
self.kernel_size = kernel_size
self.num_layers = num_layers
cell_list = []
for i in range(self.num_layers):
cur_input_channels = self.input_channels if i == 0 else self.hidden_channels
cell_list.append(ConvLSTMCell(cur_input_channels, self.hidden_channels, self.kernel_size))
self.cell_list = nn.ModuleList(cell_list)
def forward(self, input):
hidden_states = []
cell_states = []
seq_len = input.size(1)
h = None
c = None
for i in range(self.num_layers):
hidden_states.append(h)
cell_states.append(c)
for t in range(seq_len):
x = input[:, t, :, :, :]
for i in range(self.num_layers):
h, c = hidden_states[i], cell_states[i]
h_new, c_new = self.cell_list[i](x, (h, c))
hidden_states[i] = h_new
cell_states[i] = c_new
x = h_new
return hidden_states[-1], cell_states[-1]
class ConvLSTM2d(nn.Module):
def __init__(self, input_channels, hidden_channels, kernel_size, num_layers):
super(ConvLSTM2d, self).__init__()
self.input_channels = input_channels
self.hidden_channels = hidden_channels
self.kernel_size = kernel_size
self.num_layers = num_layers
self.conv_stacks = nn.ModuleList()
for i in range(self.num_layers):
if i == 0:
self.conv_stacks.append(nn.Conv2d(self.input_channels, self.hidden_channels, self.kernel_size, 1, self.kernel_size // 2))
else:
self.conv_stacks.append(nn.Conv2d(self.hidden_channels, self.hidden_channels, self.kernel_size, 1, self.kernel_size // 2))
self.conv_stacks.append(ConvLSTM(self.hidden_channels, self.hidden_channels, self.kernel_size, 1))
def forward(self, input):
seq_len = input.size(1)
current_input = input
for i in range(self.num_layers):
h, c = None, None
conv_lstm = self.conv_stacks[i * 2 + 1]
output_inner = []
for t in range(seq_len):
h, c = conv_lstm(current_input[:, t, :, :, :], (h, c))
output_inner.append(h)
current_input = torch.stack(output_inner, dim=1)
if i < self.num_layers - 1:
current_input = self.conv_stacks[i * 2](current_input)
return current_input
```
这个代码示例定义了一个 ConvLSTM2d 层,它可以对输入的特征图进行时空建模,并提取出更加具有时空信息的特征。其中,ConvLSTM2d 层包括多个 ConvLSTM 层,每个 ConvLSTM 层都包含一个 ConvLSTMCell 单元,用于对输入进行时空建模。可以通过调用这个 ConvLSTM2d 层来实现对输入特征图的时空建模和特征提取。
阅读全文