模型预测 实现一个模型预测的功能,以便比较容易地看到预测结果。当输入一串文本后,对该条文本进行数据处理,然后利用训练好的模型进行预测,并输出最终的预测标签。 In [11] def infer(model, text): model.eval() # 数据处理 encoded_inputs = tokenizer(text, max_seq_len=max_seq_len) # 构造输入模型的数据 tokens = tokenizer.convert_ids_to_tokens(encoded_inputs["input_ids"]) input_ids = paddle.to_tensor(encoded_inputs["input_ids"], dtype="int64").unsqueeze(0) token_type_ids = paddle.to_tensor(encoded_inputs["token_type_ids"], dtype="int64").unsqueeze(0) # 模型预测 logits = model(input_ids=input_ids, token_type_ids=token_type_ids) # 解析标签 pred_labels = logits.argmax(axis=-1).numpy().tolist()[0] entities = metric.get_entities(pred_labels) infer_list = [] for entity in entities: ent_name, start, end = entity infer_list.append("".join(tokens[start: end+1])) print("label: ", infer_list) text = "佳丽海鲜酒楼宝福店,地址湖滨南路819号宝福大厦34楼,经典老店,位于莲板十字路口处,近外图!" infer(model, text)
时间: 2024-01-08 22:04:54 浏览: 72
这段代码实现了使用训练好的模型进行预测的功能,具体实现过程如下:
首先通过调用 tokenizer 对输入的文本进行数据处理,并将处理后的数据构造成模型需要的输入格式(input_ids 和 token_type_ids),然后将这些数据输入到模型中进行预测。
预测结果是一个 logits 张量,通过取 logits 张量在最后一个维度上的最大值(argmax)可以得到预测标签。接着使用 metric.get_entities 方法解析预测标签,得到每个实体的名称、起始位置和结束位置,然后根据起始位置和结束位置从 tokens 中取出对应的文本,最后将预测出的实体名称输出到控制台。
以上就是这段代码的实现过程,可以通过传入不同的文本进行预测。
阅读全文