leaflet获取聚类结果,{"y":115.9057200,"x":29.1660800,"label":0},格式的json文件,写dbscan函数遍历聚类结果,在地图上绘制聚类点。
时间: 2023-10-22 08:22:53 浏览: 76
DBSCAN,对数据进行聚类.m
以下是一个简单的dbscan函数,可以遍历聚类结果并在地图上绘制聚类点。请注意,这个函数假定聚类结果已经按照标签排好序了。
```python
import folium
def dbscan(cluster_results, eps, min_pts, color_map):
"""
:param cluster_results: 聚类结果,格式为 [{"y":115.9057200,"x":29.1660800,"label":0}, ...]
:param eps: DBSCAN算法中的半径参数
:param min_pts: DBSCAN算法中的最小点数参数
:param color_map: 标签和颜色的映射关系,格式为 {0: 'red', 1: 'blue', ...}
"""
# 初始化地图
map_center = [cluster_results[0]['y'], cluster_results[0]['x']]
m = folium.Map(location=map_center, zoom_start=10)
# 初始化聚类器
clusters = {}
for point in cluster_results:
label = point['label']
if label not in clusters:
clusters[label] = []
clusters[label].append((point['y'], point['x']))
# 遍历聚类结果并在地图上绘制聚类点
for label, points in clusters.items():
color = color_map[label]
for point in points:
folium.CircleMarker(
location=point,
radius=5,
color=color,
fill=True,
fill_color=color
).add_to(m)
return m
```
使用示例:
```python
cluster_results = [
{"y": 115.9057200, "x": 29.1660800, "label": 0},
{"y": 115.9057200, "x": 29.1660800, "label": 0},
{"y": 115.9067200, "x": 29.1660800, "label": 1},
{"y": 115.9067200, "x": 29.1670800, "label": 1},
{"y": 115.9077200, "x": 29.1670800, "label": 2},
{"y": 115.9077200, "x": 29.1680800, "label": 2},
{"y": 115.9087200, "x": 29.1680800, "label": 2}
]
color_map = {
0: 'red',
1: 'blue',
2: 'green'
}
dbscan(cluster_results, eps=0.001, min_pts=2, color_map=color_map)
```
阅读全文