目标障碍物检测跟踪matlab代码
时间: 2023-10-04 20:09:45 浏览: 62
【路径规划】基于A星算法实现静态障碍物下的动态目标跟踪附matlab代码.zip
5星 · 资源好评率100%
以下是一份基于MATLAB的目标障碍物检测跟踪代码,供您参考:
```
% 读入视频
videoFileReader = vision.VideoFileReader('input.avi');
% 创建视频播放器
videoPlayer = vision.VideoPlayer('Position', [29, 597, 643, 386]);
% 读取第一帧图像
objectFrame = step(videoFileReader);
% 提取图像中的前景
foregroundDetector = vision.ForegroundDetector('NumGaussians', 3, 'NumTrainingFrames', 50);
foreground = step(foregroundDetector, objectFrame);
% 创建二值化形态学操作对象
se = strel('square', 3);
% 初始化跟踪器
objectRegion = [70, 50, 20, 20];
objectImage = insertShape(objectFrame, 'Rectangle', objectRegion, 'Color', 'red');
objectImage = rgb2gray(objectImage);
points = detectSURFFeatures(objectImage);
[features, points] = extractFeatures(objectImage, points);
tracker = vision.PointTracker('MaxBidirectionalError', 2, 'NumPyramidLevels', 5);
initialize(tracker, points.Location, objectImage);
% 跟踪视频中的目标
while ~isDone(videoFileReader)
% 读取下一帧图像
frame = step(videoFileReader);
% 提取图像中的前景
foreground = step(foregroundDetector, frame);
% 进行形态学操作
filteredForeground = imopen(foreground, se);
% 检测并跟踪目标
[points, validity] = step(tracker, rgb2gray(frame));
trackedPoints = points(validity, :);
if size(trackedPoints, 1) >= 2
% 估计目标的边界框
box = [min(trackedPoints(:, 1)), min(trackedPoints(:, 2)), max(trackedPoints(:, 1)) - min(trackedPoints(:, 1)), max(trackedPoints(:, 2)) - min(trackedPoints(:, 2))];
% 显示跟踪结果
objectImage = insertShape(frame, 'Rectangle', box, 'Color', 'red');
step(videoPlayer, objectImage);
end
end
% 释放资源
release(videoPlayer);
release(videoFileReader);
```
该代码使用了背景差分算法提取图像中的前景,然后通过形态学操作对前景进行滤波,最后使用SURF特征点检测和点追踪算法来跟踪目标。您可以将其作为参考,根据自己的需求进行修改和优化。
阅读全文