Tansformer翻译模型

时间: 2024-01-18 09:02:02 浏览: 30
Transformer翻译模型是一种基于深度学习的神经机器翻译模型,它是由Google在2017年提出的。相较于传统的循环神经网络(RNN)翻译模型,Transformer模型使用了自注意力机制(self-attention),能够更好地捕捉长距离依赖关系,从而提升翻译质量。 Transformer模型的核心是多头自注意力机制(Multi-Head Attention)。在翻译任务中,输入的源语言句子和目标语言句子都被表示成一个由词向量组成的向量序列。在多头自注意力机制中,每个词向量都会与所有其他词向量进行相似度计算,从而得到一个权重向量。这个权重向量体现了每个词向量在整个句子中的重要性。然后,将每个词向量按照其对应的权重向量进行加权求和,得到整个句子的表示。 除了多头自注意力机制,Transformer模型还使用了残差连接和层归一化等技术,从而加速训练和提高模型的鲁棒性。 总之,Transformer模型是一种非常先进的神经机器翻译模型,具有较好的翻译质量和较高的效率。
相关问题

Tansformer翻译模型代码

以下是基于TensorFlow的Transformer翻译模型代码: ``` import tensorflow as tf import numpy as np class MultiHeadAttention(tf.keras.layers.Layer): def __init__(self, d_model, num_heads): super(MultiHeadAttention, self).__init__() self.num_heads = num_heads self.d_model = d_model assert d_model % self.num_heads == 0 self.depth = d_model // self.num_heads self.Wq = tf.keras.layers.Dense(d_model) self.Wk = tf.keras.layers.Dense(d_model) self.Wv = tf.keras.layers.Dense(d_model) self.dense = tf.keras.layers.Dense(d_model) def split_heads(self, x, batch_size): x = tf.reshape(x, (batch_size, -1, self.num_heads, self.depth)) return tf.transpose(x, perm=[0, 2, 1, 3]) def call(self, q, k, v, mask): batch_size = tf.shape(q)[0] q = self.Wq(q) k = self.Wk(k) v = self.Wv(v) q = self.split_heads(q, batch_size) k = self.split_heads(k, batch_size) v = self.split_heads(v, batch_size) scaled_attention, attention_weights = self.scaled_dot_product_attention(q, k, v, mask) scaled_attention = tf.transpose(scaled_attention, perm=[0, 2, 1, 3]) concat_attention = tf.reshape(scaled_attention, (batch_size, -1, self.d_model)) output = self.dense(concat_attention) return output, attention_weights def scaled_dot_product_attention(self, q, k, v, mask): matmul_qk = tf.matmul(q, k, transpose_b=True) depth = tf.cast(tf.shape(k)[-1], tf.float32) logits = matmul_qk / tf.math.sqrt(depth) if mask is not None: logits += (mask * -1e9) attention_weights = tf.nn.softmax(logits, axis=-1) output = tf.matmul(attention_weights, v) return output, attention_weights def point_wise_feed_forward_network(d_model, dff): return tf.keras.Sequential([ tf.keras.layers.Dense(dff, activation='relu'), tf.keras.layers.Dense(d_model) ]) class EncoderLayer(tf.keras.layers.Layer): def __init__(self, d_model, num_heads, dff, rate=0.1): super(EncoderLayer, self).__init__() self.mha = MultiHeadAttention(d_model, num_heads) self.ffn = point_wise_feed_forward_network(d_model, dff) self.layernorm1 = tf.keras.layers.LayerNormalization(epsilon=1e-6) self.layernorm2 = tf.keras.layers.LayerNormalization(epsilon=1e-6) self.dropout1 = tf.keras.layers.Dropout(rate) self.dropout2 = tf.keras.layers.Dropout(rate) def call(self, x, training, mask): attn_output, _ = self.mha(x, x, x, mask) attn_output = self.dropout1(attn_output, training=training) out1 = self.layernorm1(x + attn_output) ffn_output = self.ffn(out1) ffn_output = self.dropout2(ffn_output, training=training) out2 = self.layernorm2(out1 + ffn_output) return out2 class DecoderLayer(tf.keras.layers.Layer): def __init__(self, d_model, num_heads, dff, rate=0.1): super(DecoderLayer, self).__init__() self.mha1 = MultiHeadAttention(d_model, num_heads) self.mha2 = MultiHeadAttention(d_model, num_heads) self.ffn = point_wise_feed_forward_network(d_model, dff) self.layernorm1 = tf.keras.layers.LayerNormalization(epsilon=1e-6) self.layernorm2 = tf.keras.layers.LayerNormalization(epsilon=1e-6) self.layernorm3 = tf.keras.layers.LayerNormalization(epsilon=1e-6) self.dropout1 = tf.keras.layers.Dropout(rate) self.dropout2 = tf.keras.layers.Dropout(rate) self.dropout3 = tf.keras.layers.Dropout(rate) def call(self, x, enc_output, training, look_ahead_mask, padding_mask): attn1, attn_weights_block1 = self.mha1(x, x, x, look_ahead_mask) attn1 = self.dropout1(attn1, training=training) out1 = self.layernorm1(attn1 + x) attn2, attn_weights_block2 = self.mha2(enc_output, enc_output, out1, padding_mask) attn2 = self.dropout2(attn2, training=training) out2 = self.layernorm2(attn2 + out1) ffn_output = self.ffn(out2) ffn_output = self.dropout3(ffn_output, training=training) out3 = self.layernorm3(ffn_output + out2) return out3, attn_weights_block1, attn_weights_block2 class Encoder(tf.keras.layers.Layer): def __init__(self, num_layers, d_model, num_heads, dff, input_vocab_size, maximum_position_encoding, rate=0.1): super(Encoder, self).__init__() self.d_model = d_model self.num_layers = num_layers self.embedding = tf.keras.layers.Embedding(input_vocab_size, d_model) self.pos_encoding = positional_encoding(maximum_position_encoding, self.d_model) self.enc_layers = [EncoderLayer(d_model, num_heads, dff, rate) for _ in range(num_layers)] self.dropout = tf.keras.layers.Dropout(rate) def call(self, x, training, mask): seq_len = tf.shape(x)[1] x = self.embedding(x) x *= tf.math.sqrt(tf.cast(self.d_model, tf.float32)) x += self.pos_encoding[:, :seq_len, :] x = self.dropout(x, training=training) for i in range(self.num_layers): x = self.enc_layers[i](x, training, mask) return x class Decoder(tf.keras.layers.Layer): def __init__(self, num_layers, d_model, num_heads, dff, target_vocab_size, maximum_position_encoding, rate=0.1): super(Decoder, self).__init__() self.d_model = d_model self.num_layers = num_layers self.embedding = tf.keras.layers.Embedding(target_vocab_size, d_model) self.pos_encoding = positional_encoding(maximum_position_encoding, d_model) self.dec_layers = [DecoderLayer(d_model, num_heads, dff, rate) for _ in range(num_layers)] self.dropout = tf.keras.layers.Dropout(rate) def call(self, x, enc_output, training, look_ahead_mask, padding_mask): seq_len = tf.shape(x)[1] attention_weights = {} x = self.embedding(x) x *= tf.math.sqrt(tf.cast(self.d_model, tf.float32)) x += self.pos_encoding[:, :seq_len, :] x = self.dropout(x, training=training) for i in range(self.num_layers): x, block1, block2 = self.dec_layers[i](x, enc_output, training, look_ahead_mask, padding_mask) attention_weights[f'decoder_layer{i + 1}_block1'] = block1 attention_weights[f'decoder_layer{i + 1}_block2'] = block2 return x, attention_weights def positional_encoding(position, d_model): angle_rates = 1 / np.power(10000, (2 * (np.arange(d_model)[np.newaxis, :] // 2)) / np.float32(d_model)) angle_rads = np.arange(position)[:, np.newaxis] * angle_rates sines = np.sin(angle_rads[:, 0::2]) cosines = np.cos(angle_rads[:, 1::2]) pos_encoding = np.concatenate([sines, cosines], axis=-1) pos_encoding = pos_encoding[np.newaxis, ...] return tf.cast(pos_encoding, dtype=tf.float32) class Transformer(tf.keras.Model): def __init__(self, num_layers, d_model, num_heads, dff, input_vocab_size, target_vocab_size, pe_input, pe_target, rate=0.1): super(Transformer, self).__init__() self.encoder = Encoder(num_layers, d_model, num_heads, dff, input_vocab_size, pe_input, rate) self.decoder = Decoder(num_layers, d_model, num_heads, dff, target_vocab_size, pe_target, rate) self.final_layer = tf.keras.layers.Dense(target_vocab_size) def call(self, inp, tar, training, enc_padding_mask, look_ahead_mask, dec_padding_mask): enc_output = self.encoder(inp, training, enc_padding_mask) dec_output, attention_weights = self.decoder( tar, enc_output, training, look_ahead_mask, dec_padding_mask) final_output = self.final_layer(dec_output) return final_output, attention_weights ``` 这里实现了一个基本的Transformer模型结构,包括Encoder和Decoder。其中,MultiHeadAttention用于实现多头注意力机制,EncoderLayer和DecoderLayer分别为编码器和解码器层,Encoder和Decoder则分别为编码器和解码器,positional_encoding用于对输入进行位置编码。完整的模型结构包括输入、输出、损失函数等封装在一个Transformer类中。

tansformer模型

Transformer模型是一种用于自然语言处理任务的深度学习模型,由Google在2017年提出。与传统的循环神经网络(RNN)不同,Transformer模型使用了注意力机制(Attention)来实现输入与输出之间的对齐,从而避免了RNN中的梯度消失问题。Transformer模型在机器翻译、语言模型、文本分类等任务中均表现出色,成为自然语言处理领域中的重要模型之一。

相关推荐

最新推荐

recommend-type

DataStage开发指南

3.1.7 Tansformer Stage 13 3.1.8 Sort Stage 14 3.1.9 LookUp Stage 15 3.1.10 Join Stage 15 3.1.11 LookUp Stage 和 Join Stage的区别 16 3.1.12 Merge Stage 17 3.1.13 Modify Stage 18 3.1.14 Data Set Stage ...
recommend-type

基于EasyX的贪吃蛇小游戏 - C语言

基于EasyX的贪吃蛇小游戏 - C语言
recommend-type

Energy Core ECP5705-V01.pdf

Energy Core ECP5705-V01.pdf
recommend-type

matlabGUI学生成绩管理系统pdf

建立基于图形用户界面GUI的学生成绩管理系统,该系统能够实现学生成绩信息的增加、删除、查询(查询某门课所有学生的成绩并显示排名,查询某个学生的各科成绩并显示排名)、课程成绩统计最高分、最低分、平均分、方差、并显示相应的排名;绘制柱状图、条形图、饼状图、正太分布曲线等功能。 通过本实验使学生掌握图形用户界面GUI的操作和设计流程,并通过编写回调函数巩固前期的知识。
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

MATLAB结构体与对象编程:构建面向对象的应用程序,提升代码可维护性和可扩展性

![MATLAB结构体与对象编程:构建面向对象的应用程序,提升代码可维护性和可扩展性](https://picx.zhimg.com/80/v2-8132d9acfebe1c248865e24dc5445720_1440w.webp?source=1def8aca) # 1. MATLAB结构体基础** MATLAB结构体是一种数据结构,用于存储和组织相关数据。它由一系列域组成,每个域都有一个名称和一个值。结构体提供了对数据的灵活访问和管理,使其成为组织和处理复杂数据集的理想选择。 MATLAB中创建结构体非常简单,使用struct函数即可。例如: ```matlab myStruct
recommend-type

详细描述一下STM32F103C8T6怎么与DHT11连接

STM32F103C8T6可以通过单总线协议与DHT11连接。连接步骤如下: 1. 将DHT11的VCC引脚连接到STM32F103C8T6的5V电源引脚; 2. 将DHT11的GND引脚连接到STM32F103C8T6的GND引脚; 3. 将DHT11的DATA引脚连接到STM32F103C8T6的GPIO引脚,可以选择任一GPIO引脚,需要在程序中配置; 4. 在程序中初始化GPIO引脚,将其设为输出模式,并输出高电平,持续至少18ms,以激活DHT11; 5. 将GPIO引脚设为输入模式,等待DHT11响应,DHT11会先输出一个80us的低电平,然后输出一个80us的高电平,
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依