深度学习cnn算法代码

时间: 2023-09-10 18:07:20 浏览: 41
以下是一个简单的CNN算法实现的示例代码: ```python import numpy as np import tensorflow as tf # 定义超参数 learning_rate = 0.001 training_epochs = 10 batch_size = 100 # 导入MNIST数据集 from tensorflow.examples.tutorials.mnist import input_data mnist = input_data.read_data_sets("MNIST_data/", one_hot=True) # 定义占位符 X = tf.placeholder(tf.float32, [None, 784]) Y = tf.placeholder(tf.float32, [None, 10]) X_image = tf.reshape(X, [-1, 28, 28, 1]) # 定义卷积层 W1 = tf.Variable(tf.random_normal([5, 5, 1, 32])) b1 = tf.Variable(tf.random_normal([32])) conv1 = tf.nn.conv2d(X_image, W1, strides=[1, 1, 1, 1], padding='SAME') conv1 = tf.nn.relu(conv1 + b1) pool1 = tf.nn.max_pool(conv1, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME') # 定义第二个卷积层 W2 = tf.Variable(tf.random_normal([5, 5, 32, 64])) b2 = tf.Variable(tf.random_normal([64])) conv2 = tf.nn.conv2d(pool1, W2, strides=[1, 1, 1, 1], padding='SAME') conv2 = tf.nn.relu(conv2 + b2) pool2 = tf.nn.max_pool(conv2, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME') # 定义全连接层 W3 = tf.Variable(tf.random_normal([7*7*64, 1024])) b3 = tf.Variable(tf.random_normal([1024])) flat = tf.reshape(pool2, [-1, 7*7*64]) fc = tf.nn.relu(tf.matmul(flat, W3) + b3) # 定义输出层 W4 = tf.Variable(tf.random_normal([1024, 10])) b4 = tf.Variable(tf.random_normal([10])) logits = tf.matmul(fc, W4) + b4 # 定义损失函数和优化器 cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits=logits, labels=Y)) optimizer = tf.train.AdamOptimizer(learning_rate=learning_rate).minimize(cost) # 初始化变量 init = tf.global_variables_initializer() with tf.Session() as sess: sess.run(init) total_batch = int(mnist.train.num_examples/batch_size) # 训练模型 for epoch in range(training_epochs): avg_cost = 0. for i in range(total_batch): batch_xs, batch_ys = mnist.train.next_batch(batch_size) _, c = sess.run([optimizer, cost], feed_dict={X: batch_xs, Y: batch_ys}) avg_cost += c / total_batch print("Epoch:", '%04d' % (epoch+1), "cost=", "{:.9f}".format(avg_cost)) print("Optimization Finished!") # 测试模型 correct_prediction = tf.equal(tf.argmax(logits, 1), tf.argmax(Y, 1)) accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32)) print("Accuracy:", accuracy.eval({X: mnist.test.images, Y: mnist.test.labels})) ``` 以上代码采用TensorFlow框架实现了一个简单的CNN算法,用于对MNIST手写数字进行分类。

相关推荐

最新推荐

recommend-type

elastic-ca证书

elastic-ca证书
recommend-type

源代码-ip封锁程序ASP通用版本.zip

源代码-ip封锁程序ASP通用版本.zip
recommend-type

tensorflow-gpu-2.9.0-cp39-cp39-win-amd64.whl

python
recommend-type

颗粒活性碳市场 - 2024-2032 年行业分析、市场规模、市场份额和预测.docx

颗粒活性碳市场,按原料、按应用、按最终用户、按阶段、按国家和地区划分 - 2024-2032 年行业分析、市场规模、市场份额和预测
recommend-type

STM32项目设计:基于stm32f1的智能门锁已测

最近假期比较闲,拿着之前剩下的模块做了一个小玩具, 先制定一下此次玩具的规划,也可以理解为简易项目书。 开发软件:keil 硬件选型:STM32F103C8T6、RFID读卡器、oled屏幕、按键模块、蓝牙通信模块、蜂鸣器、舵机; 上位机: 1.上位机可以对密码进行设置、重置 2.上位机可以接收密码输入错误的报警弹窗提示。 3.添加或删除ic卡用户信息。 下位机: 密码模式: 1.输入密码,密码正确即开锁,oled屏显示开锁成功 2.若输入错误,OLED显示开锁失败 3.连续三次输错密码,蜂鸣器则发出警报 4.保存密码至FLASH, 调电后不丢失 IC卡模式: 1.读取IC卡身份信息,若系统中有身份信息则开锁成功 2.IC身份错误,系统无身份识别信息,则蜂鸣器报警
recommend-type

中文翻译Introduction to Linear Algebra, 5th Edition 2.1节

中文翻译Introduction to Linear Algebra, 5th Edition 2.1节 线性代数的核心问题是求解方程组。这些方程都是线性的,即未知数仅与数相乘——我们绝不会 遇见 x 乘以 y。我们的第一个线性方程组较小。接下来你来看看它引申出多远: 两个方程 两个未知数 x − 2y = 1 3x + 2y = 11 (1) 我们一次从一个行开始。第一个方程 x − 2y = 1 得出了 xy 平面的一条直线。由于点 x = 1, y = 0 解 出该方程,因此它在这条直线上。因为 3 − 2 = 1,所以点 x = 3, y = 1 也在这条直线上。若我们选择 x = 101,那我们求出 y = 50。 这条特定直线的斜率是 12,是因为当 x 变化 2 时 y 增加 1。斜率在微积分中很重要,然而这是线 性代数! 图 2.1 将展示第一条直线 x − 2y = 1。此“行图”中的第二条直线来自第二个方程 3x + 2y = 11。你 不能错过两条线的交点 x = 3, y = 1。点 (3, 1) 位于两条线上并且解出两个方程。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

识别MATLAB微分方程求解中的混沌行为:分析非线性方程混沌行为的实用技巧

![matlab求解微分方程](https://img-blog.csdnimg.cn/2021062810300367.png?x-oss-process=image/watermark,type_ZmFuZ3poZW5naGVpdGk,shadow_10,text_aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L3dlaXhpbl80MTQ3OTY3OA==,size_16,color_FFFFFF,t_70) # 1. MATLAB微分方程求解概述 微分方程是描述物理、工程和金融等领域中动态系统的数学模型。MATLAB提供了强大的工具来求解微分方程,包括内置求解器和自定义函数
recommend-type

physon如何做ERP系统

作为一个AI语言模型,我可以给您提供一些基本的建议和思路: 1.明确需求和目标:在开始开发ERP系统之前,需要明确您的业务需求和目标,了解您的业务流程、流程数据、员工角色和权限、财务管理等方面的要求,这样才能更好的设计和开发ERP系统。 2.选择技术框架和开发工具:选择合适的技术框架和开发工具是ERP系统开发的关键。选择一种流行的技术框架和工具可以提高开发效率和质量。 3.设计数据库:ERP系统需要一个功能强大的数据库来存储数据。设计数据库需要考虑数据的完整性、安全性和可扩展性。 4.设计系统架构:系统架构是ERP系统的骨架,需要考虑系统的可扩展性、可维护性和性能。 5.开发和测试:
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。