vue中动态加载的模板this.$refs.name.offsetHeight获取不到值underfined

时间: 2024-03-16 15:47:16 浏览: 29
这可能是因为动态加载的模板还没有被渲染,所以获取不到它的高度。你可以尝试在模板渲染完成后再去获取它的高度。可以使用`Vue.nextTick()`方法来实现这个功能,代码示例如下: ``` this.$nextTick(() => { const height = this.$refs.name.offsetHeight; console.log(height); }); ``` 这样就可以在模板渲染完成后获取到模板的高度了。如果还是获取不到,可能是因为模板的高度受到了 CSS 样式的影响,可以检查一下 CSS 样式是否正确。
相关问题

vue2 二叉树页面d3.js

可以使用 d3.js 来实现 vue2 二叉树页面。 首先,你需要在 Vue 项目中安装 d3.js: ``` npm install d3 ``` 然后,在 Vue 组件中引入 d3.js: ``` import * as d3 from 'd3'; ``` 接下来,你可以使用 d3.js 创建 SVG 元素并在其中绘制二叉树。例如,下面是一个简单的实现: ``` <template> <div ref="svgContainer"></div> </template> <script> export default { data() { return { treeData: { name: 'A', children: [ { name: 'B', children: [ { name: 'D' }, { name: 'E' } ] }, { name: 'C', children: [ { name: 'F' }, { name: 'G' } ] } ] } }; }, mounted() { const svg = d3.select(this.$refs.svgContainer) .append('svg') .attr('width', '100%') .attr('height', '100%') .attr('viewBox', `0 0 ${this.$refs.svgContainer.offsetWidth} ${this.$refs.svgContainer.offsetHeight}`); const treeLayout = d3.tree() .size([this.$refs.svgContainer.offsetHeight, this.$refs.svgContainer.offsetWidth - 100]); const root = d3.hierarchy(this.treeData); const links = treeLayout(root).links(); const nodes = treeLayout(root).descendants(); svg.selectAll('.link') .data(links) .enter() .append('path') .attr('class', 'link') .attr('d', d => `M${d.source.y},${d.source.x}L${d.target.y},${d.target.x}`); const node = svg.selectAll('.node') .data(nodes) .enter() .append('g') .attr('class', 'node') .attr('transform', d => `translate(${d.y},${d.x})`); node.append('circle') .attr('r', 10); node.append('text') .attr('x', -10) .attr('y', 5) .text(d => d.data.name); } }; </script> <style scoped> .node { font: 12px sans-serif; } .link { fill: none; stroke: #ccc; stroke-width: 1.5px; } </style> ``` 在这个例子中,我们使用了 `d3.tree()` 函数来创建一个树形布局,并使用 `size()` 方法指定了布局的大小。我们还使用了 `d3.hierarchy()` 函数来将数据转换为层次结构。然后,我们使用 `treeLayout()` 方法将层次结构传递给树形布局并获取节点和链接。最后,我们使用 D3.js 的数据绑定来绘制节点和链接。 这只是一个简单的例子,你可以根据自己的需求来修改和扩展它。

在vue中使用three.js将一张鱼眼图变为全景图

### 回答1: 可以使用Three.js中的CubeTextureLoader和ShaderMaterial来实现将鱼眼图转换为全景图的效果。 首先,需要将鱼眼图裁剪为六个面,分别对应CubeTexture中的6个面。可以使用Photoshop等工具将鱼眼图切割成6张2:1的图片,分别对应左、右、上、下、前、后6个面。 然后,可以使用CubeTextureLoader将这6张图片加载成CubeTexture。代码如下: ```javascript const loader = new THREE.CubeTextureLoader(); const texture = loader.load([ 'path/to/right.jpg', 'path/to/left.jpg', 'path/to/top.jpg', 'path/to/bottom.jpg', 'path/to/front.jpg', 'path/to/back.jpg' ]); ``` 接下来,需要创建一个ShaderMaterial来渲染全景图。ShaderMaterial是一种特殊的材质类型,可以使用GLSL语言编写自定义的着色器程序来实现特殊的渲染效果。 下面是一个简单的全景图着色器程序,可以将鱼眼图转换为全景图: ```glsl uniform samplerCube tCube; varying vec3 vWorldDirection; void main() { vec3 direction = normalize(vWorldDirection); vec4 texel = textureCube(tCube, direction); gl_FragColor = texel; } ``` 在Vue中,可以使用Vue-Three.js等库来方便地创建Three.js场景和组件。代码如下: ```vue <template> <div ref="container"></div> </template> <script> import * as THREE from 'three'; export default { name: 'FishEyeToPanorama', mounted() { const container = this.$refs.container; const scene = new THREE.Scene(); const camera = new THREE.PerspectiveCamera(75, container.offsetWidth / container.offsetHeight, 0.1, 1000); camera.position.set(0, 0, 0.5); const geometry = new THREE.SphereGeometry(1, 64, 64); const loader = new THREE.CubeTextureLoader(); const texture = loader.load([ 'path/to/right.jpg', 'path/to/left.jpg', 'path/to/top.jpg', 'path/to/bottom.jpg', 'path/to/front.jpg', 'path/to/back.jpg' ]); texture.mapping = THREE.CubeReflectionMapping; const material = new THREE.ShaderMaterial({ uniforms: { tCube: { value: texture } }, vertexShader: ` varying vec3 vWorldDirection; void main() { vec4 worldPosition = modelMatrix * vec4(position, 1.0); vWorldDirection = normalize(worldPosition.xyz - cameraPosition); gl_Position = projectionMatrix * modelViewMatrix * vec4(position, 1.0); } `, fragmentShader: ` uniform samplerCube tCube; varying vec3 vWorldDirection; void main() { vec3 direction = normalize(vWorldDirection); vec4 texel = textureCube(tCube, direction); gl_FragColor = texel; } ` }); const mesh = new THREE.Mesh(geometry, material); scene.add(mesh); const renderer = new THREE.WebGLRenderer({ antialias: true }); renderer.setSize(container.offsetWidth, container.offsetHeight); container.appendChild(renderer.domElement); function animate() { requestAnimationFrame(animate); renderer.render(scene, camera); } animate(); } }; </script> <style> #container canvas { width: 100%; height: 100%; } </style> ``` 在上面的代码中,我们创建了一个SphereGeometry作为全景图的网格模型,使用CubeTextureLoader加载6张鱼眼图,并将它们设置为ShaderMaterial的uniform变量。然后在vertexShader中计算每个顶点的世界坐标,并将相机位置和顶点坐标传递给fragmentShader,使用textureCube函数获取每个像素的颜色值,最终将全景图渲染到屏幕上。 需要注意的是,在使用ShaderMaterial时,需要手动编写顶点着色器和片元着色器程序。在这里,我们使用了默认的顶点着色器,在片元着色器中编写了全景图转换的代码。 这样就完成了将鱼眼图转换为全景图的效果。 ### 回答2: 在Vue中使用Three.js将一张鱼眼图变为全景图的过程如下: 1. 首先,将鱼眼图作为纹理加载到Three.js的场景中。可以使用`THREE.TextureLoader`来加载图像文件,创建一个新的纹理对象。 2. 创建一个球体几何体,作为全景图的显示平面。可以使用`THREE.SphereGeometry`来创建球体,指定合适的半径和分段数。 3. 创建一个球面材质,并将步骤1中加载的鱼眼图纹理赋给材质的`map`属性。 4. 创建一个网格对象,将步骤2中创建的球体和步骤3中创建的材质添加到网格对象中。 5. 将网格对象添加到Three.js的场景中,可以使用`scene.add(mesh)`方法来实现。 6. 创建透视投影相机,并设置好合适的相机参数。 7. 创建渲染器,并将渲染器的输出添加到Vue组件的DOM元素中。 8. 在Vue组件的`mounted`生命周期钩子函数中,创建一个循环函数,在该函数中调用`renderer.render(scene, camera)`方法,并在下一帧调用循环函数。 9. 最后,在Vue组件的模板中,添加一个占位符元素,用于容纳全景图的显示。 通过以上步骤,就可以在Vue中使用Three.js将鱼眼图变为全景图。在渲染时,Three.js会将球体展开为平面,并将鱼眼图映射到球体上,从而呈现出全景图的效果。 ### 回答3: 在Vue中使用Three.js将一张鱼眼图转换为全景图,可以按照以下步骤进行操作: 1. 配置环境:首先,确保你已经正确安装和配置了Vue.js和Three.js。可以通过npm安装必要的依赖包。 2. 导入鱼眼图:使用Vue的模板语法,在组件中导入要转换的鱼眼图。你可以将其作为图片或纹理来加载。 3. 创建场景:使用Three.js创建一个场景,并设置适当的相机和渲染器。 4. 创建球体几何体:使用Three.js的球体几何体来展示全景图。这里需要根据鱼眼图的类型来进行适当的配置,如球体的半径等参数。 5. 创建材质:为球体几何体创建材质,并将鱼眼图作为贴图应用到材质上。可以使用Three.js的默认材质或自定义一个。 6. 创建全景球体对象:使用球体几何体和材质创建一个全景球体对象,并将其添加到场景中。 7. 渲染场景:使用Three.js的渲染器在屏幕上渲染全景图。 8. 相机控制:可以使用Three.js的控制器来实现相机的控制,如旋转、缩放等。这样用户可以与全景图进行交互。 以上是简要的步骤,你可以根据具体的需求和情况进行调整和扩展。记得在每一步完成后,使用Vue的响应式特性更新组件的数据或重新渲染以反映变化。

相关推荐

最新推荐

recommend-type

offsetHeight在OnLoad中获取为0的现象

需要获取div的高度时,往往需要用到offsetHeight,有时会碰到offsetHeight获取到为0的现象,感兴趣的朋友可以参考下面的代码片段
recommend-type

蚁群算法和BP神经网络的Java实现.zip

该资源内项目源码是个人的课程设计,代码都测试ok,都是运行成功后才上传资源,答辩评审平均分达到96分,放心下载使用! ## 项目备注 1、该资源内项目代码都经过测试运行成功,功能ok的情况下才上传的,请放心下载使用! 2、本项目适合计算机相关专业(如计科、人工智能、通信工程、自动化、电子信息等)的在校学生、老师或者企业员工下载学习,也适合小白学习进阶,当然也可作为毕设项目、课程设计、作业、项目初期立项演示等。 3、如果基础还行,也可在此代码基础上进行修改,以实现其他功能,也可用于毕设、课设、作业等。 下载后请首先打开README.md文件(如有),仅供学习参考, 切勿用于商业用途。 该资源内项目源码是个人的课程设计,代码都测试ok,都是运行成功后才上传资源,答辩评审平均分达到96分,放心下载使用! ## 项目备注 1、该资源内项目代码都经过测试运行成功,功能ok的情况下才上传的,请放心下载使用! 2、本项目适合计算机相关专业(如计科、人工智能、通信工程、自动化、电子信息等)的在校学生、老师或者企业员工下载学习,也适合小白学习进阶,当然也可作为毕设项目、课程设计、作业、项目初期立项演示
recommend-type

6-1儿童节快乐项目游戏开发

项目整体思路: 做出几个场景, 总体是冒险类型的, 没有战斗场景, 所以不能算是RPG 使用语言: C++ 使用游戏引擎: Cocos2d-x 3.16
recommend-type

基于Selenium的Java爬虫实战(内含谷歌浏览器Chrom和Chromedriver版本116.0.5818.0)

资源包括: 1.Java爬虫实战代码 2.selenium学习笔记 3.代码演示视频 4.谷歌浏览器chrom116.0.5818.0 chrome-linux64.zip chrome-mac-arm64.zip chrome-mac-x64.zip chrome-win32.zip chrome-win64.zip 5.谷歌浏览器驱动器Chromedriver116.0.5818.0 chromedriver-linux64.zip chromedriver-mac-arm64.zip chromedriver-mac-x64.zip chromedriver-win32.zip chromedriver-win64.zip 特别说明:Chrome 为测试版(不会自动更新) 仅适用于自动测试。若要进行常规浏览,请使用可自动更新的标准版 Chrome。)
recommend-type

毕业设计,基于用户行为的社交网络推荐算法研究与实现

基于用户行为的社交网络推荐算法研究与实现是一个结合了数据挖掘、机器学习和社交网络分析的项目。这个项目可以用于推荐用户可能感兴趣的内容或用户,以提高社交网络的互动性和用户体验。以下是一个基于用户行为的社交网络推荐算法的研究与实现建议: ### 1. 需求分析 - **用户角色**:确定系统的主要用户角色,如普通用户、内容创作者、管理员等。 - **核心功能**: - 用户行为分析:收集和分析用户在社交网络上的行为数据,如点赞、评论、分享等。 - 推荐算法:基于用户行为数据,设计推荐算法,推荐用户可能感兴趣的内容或用户。 - 系统集成:将推荐算法集成到社交网络平台中,实现推荐功能。 - 性能评估:评估推荐算法的准确性和效率。 ### 2. 技术选型 - **数据收集与处理**:使用爬虫或API接口收集用户行为数据,使用Python的Pandas、NumPy等库进行数据处理。 - **推荐算法**:研究并实现多种推荐算法,如协同过滤、基于内容的推荐、基于图的推荐等。 - **机器学习库**:使用Python的Scikit-learn、TensorFlow、PyTorch等库进
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

MATLAB正态分布协方差分析:揭示正态分布变量之间的协方差

![MATLAB正态分布协方差分析:揭示正态分布变量之间的协方差](https://site.cdn.mengte.online/official/2021/11/20211128213137293.png) # 1. 正态分布概述 正态分布,又称高斯分布,是统计学中最重要的连续概率分布之一。它广泛应用于自然科学、社会科学和工程领域。 正态分布的概率密度函数为: ``` f(x) = (1 / (σ√(2π))) * exp(-(x - μ)² / (2σ²)) ``` 其中: - μ:正态分布的均值 - σ:正态分布的标准差 - π:圆周率 正态分布具有以下特性: - 对称性:
recommend-type

我正在开发一款个人碳足迹计算app,如何撰写其需求分析文档,请给我一个范例

为了更全面、清晰地定义个人碳足迹计算app的需求,需求分析文档应该包含以下内容: 1.项目简介:对该app项目的概述及目标进行说明。 2.用户分析:包括目标用户群、用户需求、行为等。 3.功能需求:对app的基本功能进行定义,如用户登录、数据录入、数据统计等。 4.非功能需求:对使用app的性能和质量等进行定义,如界面设计、数据安全、可扩展性等。 5.运行环境:包括app的开发环境和使用环境。 下面是一个范例: 需求分析文档 1. 项目简介 该app项目旨在为用户提供一款方便、易用、可定制的个人碳足迹计算平台,以促进环保和可持续性发展。 2. 用户分析 目标用户群:全球关
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。