离散变量如何设置xy坐标轴范围
时间: 2023-07-04 13:23:33 浏览: 165
对于离散变量,可以使用`plt.xticks()`和`plt.yticks()`函数来设置坐标轴刻度以及标签。
例如,我们有一个离散变量x,取值为[1,2,3,4,5],想要设置x轴的范围为[0,6],可以使用以下代码:
```python
import matplotlib.pyplot as plt
x = [1, 2, 3, 4, 5]
y = [2, 4, 5, 3, 1]
plt.plot(x, y, 'o')
plt.xticks(x)
plt.xlim(0, 6)
plt.show()
```
其中,`plt.xticks(x)`函数设置x轴的刻度为x的取值,`plt.xlim(0, 6)`则设置x轴的范围为[0,6]。
同理,可以使用`plt.yticks()`和`plt.ylim()`函数来设置y轴的刻度和范围。
相关问题
设置离散横坐标matlab
在MATLAB中,可以使用函数`xticks`和`xticklabels`来设置离散横坐标。`xticks`用于指定横坐标的位置,而`xticklabels`用于指定对应位置的标签。
例如,如果想要设置离散横坐标为``,可以使用以下代码:
```matlab
x = [1, 2, 3, 4, 5]; % 离散横坐标
y = [3, 5, 2, 7, 4]; % 对应的纵坐标
plot(x, y) % 绘制图形
xticks(x) % 设置横坐标的位置
xticklabels({'A', 'B', 'C', 'D', 'E'}) % 设置横坐标的标签
xlabel('离散横坐标') % 设置横坐标轴标签
ylabel('纵坐标') % 设置纵坐标轴标签
title('离散横坐标图') % 设置图标题
```
在这个例子中,横坐标的位置被设置为``,对应的标签为`{'A', 'B', 'C', 'D', 'E'}`。通过使用`xticks`和`xticklabels`函数,我们可以将离散横坐标设置为自定义的标签。
请注意,这只是一个示例,你可以根据需要调整横坐标的位置和标签。<span class="em">1</span><span class="em">2</span><span class="em">3</span>
#### 引用[.reference_title]
- *1* *3* [matlab以时间为横坐标](https://blog.csdn.net/weixin_31141099/article/details/115849677)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v92^chatsearchT3_1"}}] [.reference_item style="max-width: 50%"]
- *2* [matlab 横坐标名称_【转载】数学建模之MATLAB画图汇总](https://blog.csdn.net/weixin_39880337/article/details/110153096)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v92^chatsearchT3_1"}}] [.reference_item style="max-width: 50%"]
[ .reference_list ]
什么是连续变量什么是离散变量
在统计学和数学分析中,变量通常分为两类:连续变量(Continuous Variables)和离散变量(Discrete Variables)。
1. **连续变量**:这些变量可以取无限多个值,并且之间的差异是连续的,没有明显的跳跃或间隔。例如,长度、温度、时间等都是典型的连续变量。当我们测量它们时,可以得到任何数值,比如一个人的身高是175厘米,而不是只有整数厘米的选项。
2. **离散变量**:这类变量只能取有限或可数无限个特定值,每个值之间有明确的差距。例如,人口数量、产品库存量、学生的成绩等级等是离散变量,因为它们通常是整数,而且每个数值之间不存在中间状态。
阅读全文