我在stm32单片机中如何实现回声抑制算法,采样频率为16000,缓冲区为1024.单声道有例程吗

时间: 2023-05-27 08:01:18 浏览: 73
回声抑制算法常见的实现方式是自适应滤波器,可以使用LMS算法实现。具体步骤如下: 1. 从麦克风采集音频数据,存入一个缓冲区; 2. 将缓冲区的数据分为两部分,一部分作为输入信号x(n),另一部分作为期望输出信号d(n),并进行归一化处理; 3. 初始化自适应滤波器的权值w(n)为0; 4. 通过自适应滤波器的前向通道,将输入信号x(n)与权值w(n)卷积得到预测输出信号y(n); 5. 计算预测误差e(n) = d(n) - y(n); 6. 更新权值w(n+1) = w(n) + μe(n)x(n),其中μ是自适应滤波器的步长; 7. 将缓冲区向前滑动一定的距离,继续从麦克风采集音频数据,重复上述步骤。 下面给出一个使用stm32单片机实现回声抑制算法的例程,代码中采样频率为16000,采样位深度为16位,缓冲区长度为1024,输出为单声道: ```c #include "stm32f10x.h" #define SAMPLE_RATE 16000 #define FRAME_SIZE 1024 #define LMS_STEP 0.01 uint16_t frame_buffer[FRAME_SIZE]; // 缓冲区 int16_t output_buffer[FRAME_SIZE]; // 输出缓冲区 float w[FRAME_SIZE] = {0}; // 自适应滤波器权值 float x[FRAME_SIZE] = {0}; // 输入信号 float d[FRAME_SIZE] = {0}; // 目标信号 float err = 0; // 预测误差 float y = 0; // 预测输出 void init_adc(void) { RCC_APB2PeriphClockCmd(RCC_APB2Periph_ADC1, ENABLE); RCC_ADCCLKConfig(RCC_PCLK2_Div8); ADC_InitTypeDef ADC_InitStructure; ADC_InitStructure.ADC_Mode = ADC_Mode_Independent; ADC_InitStructure.ADC_ScanConvMode = DISABLE; ADC_InitStructure.ADC_ContinuousConvMode = ENABLE; ADC_InitStructure.ADC_ExternalTrigConv = ADC_ExternalTrigConv_None; ADC_InitStructure.ADC_DataAlign = ADC_DataAlign_Right; ADC_InitStructure.ADC_NbrOfChannel = 1; ADC_Init(ADC1, &ADC_InitStructure); ADC_Cmd(ADC1, ENABLE); ADC_ResetCalibration(ADC1); while (ADC_GetResetCalibrationStatus(ADC1)) {} ADC_StartCalibration(ADC1); while (ADC_GetCalibrationStatus(ADC1)) {} ADC_SoftwareStartConvCmd(ADC1, ENABLE); } void init_dac(void) { RCC_APB1PeriphClockCmd(RCC_APB1Periph_DAC, ENABLE); DAC_InitTypeDef DAC_InitStructure; DAC_InitStructure.DAC_Trigger = DAC_Trigger_None; DAC_InitStructure.DAC_OutputBuffer = DAC_OutputBuffer_Enable; DAC_Init(DAC_Channel_1, &DAC_InitStructure); DAC_Cmd(DAC_Channel_1, ENABLE); } void init_gpio(void) { RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOA, ENABLE); RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOB, ENABLE); GPIO_InitTypeDef GPIO_InitStructure; GPIO_InitStructure.GPIO_Pin = GPIO_Pin_0; GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AIN; GPIO_Init(GPIOA, &GPIO_InitStructure); GPIO_InitStructure.GPIO_Pin = GPIO_Pin_4; GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AIN; GPIO_Init(GPIOB, &GPIO_InitStructure); GPIO_InitStructure.GPIO_Pin = GPIO_Pin_5; GPIO_InitStructure.GPIO_Mode = GPIO_Mode_Out_PP; GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz; GPIO_Init(GPIOA, &GPIO_InitStructure); GPIO_InitStructure.GPIO_Pin = GPIO_Pin_8; GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF_PP; GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz; GPIO_Init(GPIOA, &GPIO_InitStructure); } void init_timer(void) { RCC_APB1PeriphClockCmd(RCC_APB1Periph_TIM2, ENABLE); TIM_TimeBaseInitTypeDef TIM_InitStructure; TIM_InitStructure.TIM_Period = FRAME_SIZE - 1; TIM_InitStructure.TIM_Prescaler = SystemCoreClock / (SAMPLE_RATE * FRAME_SIZE) - 1; TIM_InitStructure.TIM_ClockDivision = TIM_CKD_DIV1; TIM_InitStructure.TIM_CounterMode = TIM_CounterMode_Up; TIM_TimeBaseInit(TIM2, &TIM_InitStructure); TIM_ITConfig(TIM2, TIM_IT_Update, ENABLE); TIM_Cmd(TIM2, ENABLE); } void init_interrupt(void) { NVIC_InitTypeDef NVIC_InitStructure; NVIC_InitStructure.NVIC_IRQChannel = TIM2_IRQn; NVIC_InitStructure.NVIC_IRQChannelPreemptionPriority = 0; NVIC_InitStructure.NVIC_IRQChannelSubPriority = 0; NVIC_InitStructure.NVIC_IRQChannelCmd = ENABLE; NVIC_Init(&NVIC_InitStructure); } void init_lms(void) { for (int i = 0; i < FRAME_SIZE; i++) { w[i] = 0; x[i] = 0; d[i] = 0; } } void update_lms(void) { for (int i = 0; i < FRAME_SIZE; i++) { x[i] = frame_buffer[i] / 32768.0; // 归一化处理 d[i] = x[i]; // 目标信号为输入信号的延迟版本 y = 0; for (int j = 0; j < FRAME_SIZE; j++) { y += w[j] * x[i - j]; // 预测输出 } err = d[i] - y; // 预测误差 for (int j = 0; j < FRAME_SIZE; j++) { w[j] += LMS_STEP * err * x[i - j]; // 权值更新 } output_buffer[i] = y * 32768.0; // 输出缓冲区 } } void TIM2_IRQHandler(void) { if (TIM_GetITStatus(TIM2, TIM_IT_Update) == SET) { TIM_ClearITPendingBit(TIM2, TIM_IT_Update); GPIO_ResetBits(GPIOA, GPIO_Pin_5); // 以下为示例代码,可以根据自己的需求修改 for (int i = 0; i < FRAME_SIZE; i++) { frame_buffer[i] = ADC_GetConversionValue(ADC1); } GPIO_SetBits(GPIOA, GPIO_Pin_5); update_lms(); for (int i = 0; i < FRAME_SIZE; i++) { DAC_SetChannel1Data(DAC_Align_12b_R, output_buffer[i]); } } } int main(void) { init_adc(); init_dac(); init_gpio(); init_timer(); init_interrupt(); init_lms(); while (1) { } } ``` 以上代码仅为示例,具体实现要根据具体场景进行修改。同时需要注意以下几点: 1. 为了减少ADC采样时的噪声,可以在ADC输入端加入一个低通滤波器; 2. 当ADC采样时需要在另一个引脚上输出一个频率高于采样频率的时钟信号,以便让外部电路采集采样时的状态; 3. 当DAC输出时需要根据具体情况判断是否需要用低通滤波器降低高频信号的干扰; 4. 当使用USB等外部设备时,需要在中断处理函数中添加数据读取和发送的代码。

相关推荐

最新推荐

STM32 Modbus 教程

STM32 Modbus 教程, 详细讲解了Modbus协议的细节,并由详细例程

STM32G030x6_x8_C6_F6_J6_K6_C8_K8中文数据手册.pdf

STM32G030系列,嵌入式中文数据手册 ----已验证,属实

单片机C51串口中断接收和发送测试例程(含通信协议的实现)

这是一个单片机C51串口接收(中断)和发送例程,可以用来测试51单片机的中断接收和查询发送,另外我觉得发送没有必要用中断,因为程序的开销是一样的

STM32如何配置使用SPI通信

SPI是一种高速的,全双工,同步的通信总线,原理和使用简单,占用引脚资源少,是一种常用的通信方式。

STM32——多通道ADC的DMA方式采集方法_嵌入式_夜风的博客-CSDN博客.pdf

STM32——多通道ADC的DMA方式采集方法_嵌入式_夜风的博客-CSDN博客

c++校园超市商品信息管理系统课程设计说明书(含源代码) (2).pdf

校园超市商品信息管理系统课程设计旨在帮助学生深入理解程序设计的基础知识,同时锻炼他们的实际操作能力。通过设计和实现一个校园超市商品信息管理系统,学生掌握了如何利用计算机科学与技术知识解决实际问题的能力。在课程设计过程中,学生需要对超市商品和销售员的关系进行有效管理,使系统功能更全面、实用,从而提高用户体验和便利性。 学生在课程设计过程中展现了积极的学习态度和纪律,没有缺勤情况,演示过程流畅且作品具有很强的使用价值。设计报告完整详细,展现了对问题的深入思考和解决能力。在答辩环节中,学生能够自信地回答问题,展示出扎实的专业知识和逻辑思维能力。教师对学生的表现予以肯定,认为学生在课程设计中表现出色,值得称赞。 整个课程设计过程包括平时成绩、报告成绩和演示与答辩成绩三个部分,其中平时表现占比20%,报告成绩占比40%,演示与答辩成绩占比40%。通过这三个部分的综合评定,最终为学生总成绩提供参考。总评分以百分制计算,全面评估学生在课程设计中的各项表现,最终为学生提供综合评价和反馈意见。 通过校园超市商品信息管理系统课程设计,学生不仅提升了对程序设计基础知识的理解与应用能力,同时也增强了团队协作和沟通能力。这一过程旨在培养学生综合运用技术解决问题的能力,为其未来的专业发展打下坚实基础。学生在进行校园超市商品信息管理系统课程设计过程中,不仅获得了理论知识的提升,同时也锻炼了实践能力和创新思维,为其未来的职业发展奠定了坚实基础。 校园超市商品信息管理系统课程设计的目的在于促进学生对程序设计基础知识的深入理解与掌握,同时培养学生解决实际问题的能力。通过对系统功能和用户需求的全面考量,学生设计了一个实用、高效的校园超市商品信息管理系统,为用户提供了更便捷、更高效的管理和使用体验。 综上所述,校园超市商品信息管理系统课程设计是一项旨在提升学生综合能力和实践技能的重要教学活动。通过此次设计,学生不仅深化了对程序设计基础知识的理解,还培养了解决实际问题的能力和团队合作精神。这一过程将为学生未来的专业发展提供坚实基础,使其在实际工作中能够胜任更多挑战。

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire

【迁移学习在车牌识别中的应用优势与局限】: 讨论迁移学习在车牌识别中的应用优势和局限

![【迁移学习在车牌识别中的应用优势与局限】: 讨论迁移学习在车牌识别中的应用优势和局限](https://img-blog.csdnimg.cn/direct/916e743fde554bcaaaf13800d2f0ac25.png) # 1. 介绍迁移学习在车牌识别中的背景 在当今人工智能技术迅速发展的时代,迁移学习作为一种强大的技术手段,在车牌识别领域展现出了巨大的潜力和优势。通过迁移学习,我们能够将在一个领域中学习到的知识和模型迁移到另一个相关领域,从而减少对大量标注数据的需求,提高模型训练效率,加快模型收敛速度。这种方法不仅能够增强模型的泛化能力,提升识别的准确率,还能有效应对数据

8155用作计时器该如何接线

8155是一种集成电路,可以作为计时器、计数器或者并行输入/输出设备使用。下面以将8155作为计时器为例,介绍一下其接线方法: 1. 将VCC引脚连接到正电源,将GND引脚连接到地线。 2. 将CLK引脚连接到一个外部时钟源。时钟源可以是一个晶体振荡器或者其他的时钟信号。 3. 将INTE引脚连接到一个外部中断请求信号。当计时器计数到设定的值时,将会产生一个中断请求信号。 4. 将CS引脚连接到电路中的一个控制信号,用来选择计时器模式或者输入/输出模式。 5. 将RD引脚连接到电路中的一个控制信号,用来读取计数器的值。 6. 将WR引脚连接到电路中的一个控制信号,用来写入计数器的值

建筑供配电系统相关课件.pptx

建筑供配电系统是建筑中的重要组成部分,负责为建筑内的设备和设施提供电力支持。在建筑供配电系统相关课件中介绍了建筑供配电系统的基本知识,其中提到了电路的基本概念。电路是电流流经的路径,由电源、负载、开关、保护装置和导线等组成。在电路中,涉及到电流、电压、电功率和电阻等基本物理量。电流是单位时间内电路中产生或消耗的电能,而电功率则是电流在单位时间内的功率。另外,电路的工作状态包括开路状态、短路状态和额定工作状态,各种电气设备都有其额定值,在满足这些额定条件下,电路处于正常工作状态。而交流电则是实际电力网中使用的电力形式,按照正弦规律变化,即使在需要直流电的行业也多是通过交流电整流获得。 建筑供配电系统的设计和运行是建筑工程中一个至关重要的环节,其正确性和稳定性直接关系到建筑物内部设备的正常运行和电力安全。通过了解建筑供配电系统的基本知识,可以更好地理解和应用这些原理,从而提高建筑电力系统的效率和可靠性。在课件中介绍了电工基本知识,包括电路的基本概念、电路的基本物理量和电路的工作状态。这些知识不仅对电气工程师和建筑设计师有用,也对一般人了解电力系统和用电有所帮助。 值得一提的是,建筑供配电系统在建筑工程中的重要性不仅仅是提供电力支持,更是为了确保建筑物的安全性。在建筑供配电系统设计中必须考虑到保护装置的设置,以确保电路在发生故障时及时切断电源,避免潜在危险。此外,在电气设备的选型和布置时也需要根据建筑的特点和需求进行合理规划,以提高电力系统的稳定性和安全性。 在实际应用中,建筑供配电系统的设计和建设需要考虑多个方面的因素,如建筑物的类型、规模、用途、电力需求、安全标准等。通过合理的设计和施工,可以确保建筑供配电系统的正常运行和安全性。同时,在建筑供配电系统的维护和管理方面也需要重视,定期检查和维护电气设备,及时发现和解决问题,以确保建筑物内部设备的正常使用。 总的来说,建筑供配电系统是建筑工程中不可或缺的一部分,其重要性不言而喻。通过学习建筑供配电系统的相关知识,可以更好地理解和应用这些原理,提高建筑电力系统的效率和可靠性,确保建筑物内部设备的正常运行和电力安全。建筑供配电系统的设计、建设、维护和管理都需要严谨细致,只有这样才能确保建筑物的电力系统稳定、安全、高效地运行。