batchNormalization
时间: 2024-04-25 21:24:48 浏览: 132
Batch Normalization
Batch normalization是一种在深度学习中常用的正则化技术。它通过对每个小批量训练数据进行归一化,使得网络在训练过程中更稳定,加快收敛速度,并且具有一定的正则化效果。
在深度神经网络中,每个隐藏层的输入分布会随着网络的训练而发生变化,这会导致网络的参数难以调整。Batch normalization通过对每个小批量数据进行归一化操作,使得每个隐藏层的输入分布保持稳定,从而缓解了梯度消失和梯度爆炸问题。
具体而言,对于输入数据的每个特征,batch normalization首先对其进行零均值化和方差归一化,然后通过一个可学习的缩放因子和平移因子进行线性变换,最后输出归一化后的数据。这样做可以保持每个特征的均值接近于0,方差接近于1,从而使得网络在不同层之间更容易传递信息。
除了正则化效果和加速收敛速度外,batch normalization还具有一定的正则化效果,可以减少模型的过拟合。
总结起来,batch normalization是一种对每个小批量数据进行归一化操作的正则化技术,它可以加快网络的收敛速度,提高模型的泛化能力,并且具有一定的正则化效果。
阅读全文