对于卷积神经网络识别恶意评论写一段代码
时间: 2023-10-15 21:04:34 浏览: 138
以下是一段基于卷积神经网络的代码,用于识别恶意评论:
```python
import pandas as pd
import numpy as np
import re
import nltk
from nltk.corpus import stopwords
from sklearn.model_selection import train_test_split
from keras.preprocessing.text import Tokenizer
from keras.preprocessing.sequence import pad_sequences
from keras.layers import Dense, Input, Conv1D, MaxPool1D, Flatten, Dropout
from keras.layers.embeddings import Embedding
from keras.models import Model
from keras.callbacks import ModelCheckpoint
# 导入数据
data = pd.read_csv("comment_data.csv")
# 对评论进行清洗和预处理
nltk.download('stopwords')
stop_words = set(stopwords.words('english'))
def clean_text(text):
# 将文本中的标点符号、数字、特殊符号等内容去除
text = re.sub('[^a-zA-Z\s]', '', text)
# 将所有字母转换成小写
text = text.lower()
# 去除停用词
text = ' '.join([word for word in text.split() if word not in stop_words])
return text
data['clean_text'] = data['text'].apply(clean_text)
# 构建词汇表,将文本转换为数字序列
tokenizer = Tokenizer(num_words=5000, split=' ')
tokenizer.fit_on_texts(data['clean_text'].values)
X = tokenizer.texts_to_sequences(data['clean_text'].values)
X = pad_sequences(X)
# 构建卷积神经网络模型
input_shape = X.shape[1]
input_layer = Input(shape=(input_shape,))
embedding_layer = Embedding(5000, 128, input_length=input_shape)(input_layer)
conv_layer = Conv1D(filters=128, kernel_size=3, activation='relu')(embedding_layer)
pool_layer = MaxPool1D(pool_size=2)(conv_layer)
flatten_layer = Flatten()(pool_layer)
hidden_layer = Dense(50, activation='relu')(flatten_layer)
output_layer = Dense(1, activation='sigmoid')(hidden_layer)
model = Model(inputs=input_layer, outputs=output_layer)
model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy'])
# 将数据分成训练集和测试集
Y = data['is_offensive'].values
X_train, X_test, Y_train, Y_test = train_test_split(X,Y, test_size = 0.20, random_state = 42)
# 训练模型
checkpoint = ModelCheckpoint("model.h5", monitor='val_accuracy', verbose=1, save_best_only=True, mode='max')
callbacks_list = [checkpoint]
model.fit(X_train, Y_train, epochs=10, batch_size=64, validation_data=(X_test, Y_test), callbacks=callbacks_list)
# 使用模型进行预测
def predict(text):
text = clean_text(text)
sequence = tokenizer.texts_to_sequences([text])
sequence = pad_sequences(sequence, maxlen=input_shape)
prediction = model.predict(sequence)
if prediction[0][0] > 0.5:
return "恶意评论"
else:
return "正常评论"
# 测试模型
print(predict("这篇文章非常棒"))
print(predict("这个游戏真的很烂,一点也不好玩"))
```
注意:该代码仅供参考,具体实现需要根据具体数据集和任务进行调整。
阅读全文