基于卷积神经网络的图像分割算法代码实现
时间: 2023-10-11 19:06:29 浏览: 163
以下是基于卷积神经网络的图像分割算法的代码实现,使用的是Python语言和Keras深度学习框架。
首先,需要导入相关的库:
```python
import numpy as np
import matplotlib.pyplot as plt
import os
import cv2
from keras.models import Model
from keras.layers import Input, concatenate, Conv2D, MaxPooling2D, Conv2DTranspose
from keras.optimizers import Adam
from keras.callbacks import ModelCheckpoint
from keras.utils import to_categorical
```
接下来,我们定义一个函数来读取图像数据和标签数据:
```python
def get_data(path):
# 读取图像和标签数据
img_path = os.path.join(path, 'images')
mask_path = os.path.join(path, 'masks')
img_names = os.listdir(img_path)
X = []
Y = []
for name in img_names:
img = cv2.imread(os.path.join(img_path, name))
mask = cv2.imread(os.path.join(mask_path, name), cv2.IMREAD_GRAYSCALE)
mask = np.expand_dims(mask, axis=-1)
# 图像和标签数据进行归一化处理
img = img / 255.0
mask = mask / 255.0
X.append(img)
Y.append(mask)
return np.array(X), np.array(Y)
```
然后,我们定义一个函数来构建卷积神经网络:
```python
def unet(input_shape=(256, 256, 3), num_classes=2):
# 定义输入层
inputs = Input(input_shape)
# 定义编码器部分
conv1 = Conv2D(32, 3, activation='relu', padding='same', kernel_initializer='he_normal')(inputs)
conv1 = Conv2D(32, 3, activation='relu', padding='same', kernel_initializer='he_normal')(conv1)
pool1 = MaxPooling2D(pool_size=(2, 2))(conv1)
conv2 = Conv2D(64, 3, activation='relu', padding='same', kernel_initializer='he_normal')(pool1)
conv2 = Conv2D(64, 3, activation='relu', padding='same', kernel_initializer='he_normal')(conv2)
pool2 = MaxPooling2D(pool_size=(2, 2))(conv2)
conv3 = Conv2D(128, 3, activation='relu', padding='same', kernel_initializer='he_normal')(pool2)
conv3 = Conv2D(128, 3, activation='relu', padding='same', kernel_initializer='he_normal')(conv3)
pool3 = MaxPooling2D(pool_size=(2, 2))(conv3)
conv4 = Conv2D(256, 3, activation='relu', padding='same', kernel_initializer='he_normal')(pool3)
conv4 = Conv2D(256, 3, activation='relu', padding='same', kernel_initializer='he_normal')(conv4)
pool4 = MaxPooling2D(pool_size=(2, 2))(conv4)
conv5 = Conv2D(512, 3, activation='relu', padding='same', kernel_initializer='he_normal')(pool4)
conv5 = Conv2D(512, 3, activation='relu', padding='same', kernel_initializer='he_normal')(conv5)
# 定义解码器部分
up6 = Conv2DTranspose(256, 2, strides=(2, 2), padding='same')(conv5)
up6 = concatenate([up6, conv4])
conv6 = Conv2D(256, 3, activation='relu', padding='same', kernel_initializer='he_normal')(up6)
conv6 = Conv2D(256, 3, activation='relu', padding='same', kernel_initializer='he_normal')(conv6)
up7 = Conv2DTranspose(128, 2, strides=(2, 2), padding='same')(conv6)
up7 = concatenate([up7, conv3])
conv7 = Conv2D(128, 3, activation='relu', padding='same', kernel_initializer='he_normal')(up7)
conv7 = Conv2D(128, 3, activation='relu', padding='same', kernel_initializer='he_normal')(conv7)
up8 = Conv2DTranspose(64, 2, strides=(2, 2), padding='same')(conv7)
up8 = concatenate([up8, conv2])
conv8 = Conv2D(64, 3, activation='relu', padding='same', kernel_initializer='he_normal')(up8)
conv8 = Conv2D(64, 3, activation='relu', padding='same', kernel_initializer='he_normal')(conv8)
up9 = Conv2DTranspose(32, 2, strides=(2, 2), padding='same')(conv8)
up9 = concatenate([up9, conv1])
conv9 = Conv2D(32, 3, activation='relu', padding='same', kernel_initializer='he_normal')(up9)
conv9 = Conv2D(32, 3, activation='relu', padding='same', kernel_initializer='he_normal')(conv9)
# 定义输出层
outputs = Conv2D(num_classes, 1, activation='softmax')(conv9)
# 构建模型
model = Model(inputs=inputs, outputs=outputs)
return model
```
现在,我们可以使用上面定义的函数来构建模型,并进行训练和测试:
```python
# 加载数据
X_train, Y_train = get_data('train')
X_test, Y_test = get_data('test')
# 将标签数据进行one-hot编码
Y_train = to_categorical(Y_train, num_classes=2)
Y_test = to_categorical(Y_test, num_classes=2)
# 构建模型
model = unet(input_shape=(256, 256, 3), num_classes=2)
# 编译模型
model.compile(optimizer=Adam(lr=1e-4), loss='binary_crossentropy', metrics=['accuracy'])
# 定义回调函数
model_checkpoint = ModelCheckpoint('unet.h5', monitor='val_loss', save_best_only=True)
# 训练模型
model.fit(X_train, Y_train, batch_size=16, epochs=100, verbose=1, validation_data=(X_test, Y_test), callbacks=[model_checkpoint])
# 加载最佳模型
model.load_weights('unet.h5')
# 测试模型
score = model.evaluate(X_test, Y_test, verbose=0)
print('Test loss:', score[0])
print('Test accuracy:', score[1])
```
以上就是基于卷积神经网络的图像分割算法的代码实现。
阅读全文