distributions.Independent
时间: 2024-04-14 07:30:04 浏览: 143
distributions.Independent 是一个 PyTorch 中的概率分布类,用于构建独立分布。它接受一个分布列表作为参数,每个分布对应一个维度,这些维度之间是相互独立的。这个类可以用于构建多维概率分布,其中每个维度都有自己的分布。
例如,我们可以使用 distributions.Independent 来构建一个二维正态分布,其中每个维度都是独立的标准正态分布:
```python
import torch
from torch.distributions import Normal, Independent
# 创建两个标准正态分布
normal1 = Normal(0, 1)
normal2 = Normal(0, 1)
# 使用 Independent 将两个分布组合成一个二维独立正态分布
independent_normal = Independent([normal1, normal2], 1)
# 生成样本
samples = independent_normal.sample()
```
在上面的例子中,`Independent([normal1, normal2], 1)` 创建了一个二维独立正态分布,其中 `normal1` 和 `normal2` 分别代表两个维度的标准正态分布。最后,我们可以通过 `sample()` 方法生成样本。
希望这个例子能够帮助你理解 distributions.Independent 类的使用。如果还有其他问题,请随时提问!
相关问题
下面pytorch代码转化为paddlepaddle2.2.2代码: import torch import torch.distributions as tdist def random_noise_levels(): """Generates random noise levels from a log-log linear distribution.""" log_min_shot_noise = np.log(0.0001) log_max_shot_noise = np.log(0.012) log_shot_noise = torch.FloatTensor(1).uniform_(log_min_shot_noise, log_max_shot_noise) shot_noise = torch.exp(log_shot_noise) line = lambda x: 2.18 * x + 1.20 n = tdist.Normal(loc=torch.tensor([0.0]), scale=torch.tensor([0.26])) log_read_noise = line(log_shot_noise) + n.sample() read_noise = torch.exp(log_read_noise) return shot_noise, read_noise def add_noise(image, shot_noise=0.01, read_noise=0.0005): """Adds random shot (proportional to image) and read (independent) noise.""" image = image.permute(1, 2, 0) # Permute the image tensor to HxWxC format from CxHxW format variance = image * shot_noise + read_noise n = tdist.Normal(loc=torch.zeros_like(variance), scale=torch.sqrt(variance)) noise = n.sample() out = image + noise out = out.permute(2, 0, 1) # Re-Permute the tensor back to CxHxW format return out
以下是将该代码转化为PaddlePaddle2.2.2的代码:
```
import paddle
import paddle.distribution as pdist
import numpy as np
def random_noise_levels():
"""Generates random noise levels from a log-log linear distribution."""
log_min_shot_noise = np.log(0.0001)
log_max_shot_noise = np.log(0.012)
log_shot_noise = paddle.uniform(shape=[1], min=log_min_shot_noise, max=log_max_shot_noise)
shot_noise = paddle.exp(log_shot_noise)
line = lambda x: 2.18 * x + 1.20
n = pdist.Normal(loc=paddle.zeros([1]), scale=paddle.ones([1]) * 0.26)
log_read_noise = line(log_shot_noise) + n.sample()
read_noise = paddle.exp(log_read_noise)
return shot_noise, read_noise
def add_noise(image, shot_noise=0.01, read_noise=0.0005):
"""Adds random shot (proportional to image) and read (independent) noise."""
image = image.permute([1, 2, 0]) # Permute the image tensor to HxWxC format from CxHxW format
variance = image * shot_noise + read_noise
n = pdist.Normal(loc=paddle.zeros_like(variance), scale=paddle.sqrt(variance))
noise = n.sample()
out = image + noise
out = out.permute([2, 0, 1]) # Re-Permute the tensor back to CxHxW format
return out
```
请注意,PaddlePaddle的分布API(`paddle.distribution`)与PyTorch的分布API(`torch.distributions`)略有不同,需要相应地更改代码。此外,PaddlePaddle的张量API(如`paddle.exp`)与PyTorch的张量API(如`torch.exp`)也略有不同,需要相应地更改代码。
def estimate_variance(xs: np.ndarray, ys: np.ndarray, affine: np.ndarray, translation: np.ndarray, responsibility: np.ndarray) -> float: """ Estimate the variance of GMM. For simplification, we assume all the Gaussian distributions share the same variance, and each feature dimension is independent, so the variance can be represented as a scalar. :param xs: a set of points with size (N, D), N is the number of samples, D is the dimension of points :param ys: a set of points with size (M, D), M is the number of samples, D is the dimension of points :param affine: an affine matrix with size (D, D) :param translation: a translation vector with size (1, D) :param responsibility: the responsibility matrix with size (N, M) :return: the variance of each Gaussian distribution, a float """ # TODO: change the code below and compute the variance of each Gaussian return 1
To compute the variance of each Gaussian distribution, we can use the following steps:
1. Transform the xs using the affine matrix and translation vector:
```
xs_transformed = xs.dot(affine) + translation
```
2. Compute the pairwise distance matrix between xs_transformed and ys:
```
distance_matrix = np.linalg.norm(xs_transformed[:, np.newaxis, :] - ys[np.newaxis, :, :], axis=2)
```
3. Compute the weighted sum of squared distances for each Gaussian:
```
weighted_distances = distance_matrix**2 * responsibility
sum_weighted_distances = np.sum(weighted_distances, axis=(0, 1))
```
4. Compute the total weight of all the points:
```
total_weight = np.sum(responsibility)
```
5. Compute the variance as the weighted average of the squared distances:
```
variance = sum_weighted_distances / total_weight
```
Here's the modified code:
```
def estimate_variance(xs: np.ndarray, ys: np.ndarray, affine: np.ndarray,
translation: np.ndarray, responsibility: np.ndarray) -> float:
"""
Estimate the variance of GMM.
For simplification, we assume all the Gaussian distributions share the same variance,
and each feature dimension is independent, so the variance can be represented as a scalar.
:param xs: a set of points with size (N, D), N is the number of samples, D is the dimension of points
:param ys: a set of points with size (M, D), M is the number of samples, D is the dimension of points
:param affine: an affine matrix with size (D, D)
:param translation: a translation vector with size (1, D)
:param responsibility: the responsibility matrix with size (N, M)
:return:
the variance of each Gaussian distribution, a float
"""
# Transform xs using the affine matrix and translation vector
xs_transformed = xs.dot(affine) + translation
# Compute the pairwise distance matrix between xs_transformed and ys
distance_matrix = np.linalg.norm(xs_transformed[:, np.newaxis, :] - ys[np.newaxis, :, :], axis=2)
# Compute the weighted sum of squared distances for each Gaussian
weighted_distances = distance_matrix**2 * responsibility
sum_weighted_distances = np.sum(weighted_distances, axis=(0, 1))
# Compute the total weight of all the points
total_weight = np.sum(responsibility)
# Compute the variance as the weighted average of the squared distances
variance = sum_weighted_distances / total_weight
return variance
```
阅读全文