x = np.linspace(0, image_shape[0], image_shape[1]) y = np.linspace(0, image_shape[1], image_shape[0])
时间: 2024-01-19 08:04:18 浏览: 87
These two lines of code create arrays of evenly spaced values between 0 and the height/width of the image. The number of values in each array is determined by the corresponding dimension of the image shape (i.e. the first array has as many values as there are columns in the image, and the second array has as many values as there are rows in the image). These arrays can be used as coordinates for plotting or other calculations.
相关问题
def create_frustum(self): # Create grid in image plane h, w = self.cfg.IMAGE.FINAL_DIM downsampled_h, downsampled_w = h // self.encoder_downsample, w // self.encoder_downsample # Depth grid depth_grid = torch.arange(*self.cfg.LIFT.D_BOUND, dtype=torch.float) depth_grid = depth_grid.view(-1, 1, 1).expand(-1, downsampled_h, downsampled_w) n_depth_slices = depth_grid.shape[0] # x and y grids x_grid = torch.linspace(0, w - 1, downsampled_w, dtype=torch.float) x_grid = x_grid.view(1, 1, downsampled_w).expand(n_depth_slices, downsampled_h, downsampled_w) y_grid = torch.linspace(0, h - 1, downsampled_h, dtype=torch.float) y_grid = y_grid.view(1, downsampled_h, 1).expand(n_depth_slices, downsampled_h, downsampled_w) # Dimension (n_depth_slices, downsampled_h, downsampled_w, 3) # containing data points in the image: left-right, top-bottom, depth frustum = torch.stack((x_grid, y_grid, depth_grid), -1) return nn.Parameter(frustum, requires_grad=False)这里的frustum可以可视化吗?
可以的,你可以使用Matplotlib库将`frustum`可视化。以下是一个简单的示例代码,可以将`frustum`中的数据点可视化为散点图:
```python
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
# 将frustum转换为Numpy数组
frustum_np = frustum.detach().cpu().numpy()
# 创建散点图
fig = plt.figure()
ax = fig.add_subplot(111, projection='3d')
ax.scatter(frustum_np[:, :, :, 0].flatten(),
frustum_np[:, :, :, 1].flatten(),
frustum_np[:, :, :, 2].flatten(),
s=1)
# 设置坐标轴标签
ax.set_xlabel('x')
ax.set_ylabel('y')
ax.set_zlabel('depth')
# 显示图像
plt.show()
```
这将显示一个三维散点图,其中x轴和y轴分别对应于图像中的水平和垂直坐标,z轴对应于深度值。
def main(): src_dir='./data/' save_dir = './data/train' src_dir_test='./data/test' save_dir_test = './data/test' filepaths = glob.glob(src_dir + '/*.jpg') filepaths_test = glob.glob(src_dir_test + '/*.jpg') def sortKeyFunc(s): return int(os.path.basename(s)[:-4]) filepaths_test.sort(key=sortKeyFunc) filepaths.sort(key=sortKeyFunc) print("[*] Reading train files...") if not os.path.exists(save_dir): os.mkdir(save_dir) os.mkdir(save_dir_test) os.mkdir('./data/train/noisy') os.mkdir('./data/train/original') os.mkdir('./data/test/noisy') os.mkdir('./data/test/original') print("[*] Applying noise...") sig = np.linspace(0,50,len(filepaths)) np.random.shuffle(sig) sig_test = np.linspace(0,50,len(filepaths_test)) np.random.shuffle(sig_test) for i in xrange(len(filepaths)): image = cv2.imread(filepaths[i]) image = cv2.resize(image,(180,180), interpolation = cv2.INTER_CUBIC) row,col,ch = image.shape mean = 0 sigma = sig[i] gauss = np.random.normal(mean,sigma,(row,col,ch)) gauss = gauss.reshape(row,col,ch) noisy = image + gauss noisy = np.clip(noisy, 0, 255) noisy = noisy.astype('uint8') cv2.imwrite(os.path.join(save_dir, "noisy/%04d.png" %i), noisy) cv2.imwrite(os.path.join(save_dir, "original/%04d.png" %i), image) for i in xrange(len(filepaths_test)): image = cv2.imread(filepaths_test[i]) image = cv2.resize(image,(180,180), interpolation = cv2.INTER_CUBIC) row,col,ch = image.shape mean = 0 sigma = sig[i] gauss = np.random.normal(mean,sigma,(row,col,ch)) gauss = gauss.reshape(row,col,ch) noisy = image + gauss noisy = np.clip(noisy, 0, 255) noisy = noisy.astype('uint8') cv2.imwrite(os.path.join(save_dir_test, "noisy/%d.png" %i), noisy) cv2.imwrite(os.path.join(save_dir_test, "original/%d.png" %i), image) print("[*] Noisy and original images saved") if __name__ == "__main__": main()
这段代码是一个图像处理脚本,用于生成加噪声的训练数据和测试数据。具体实现过程如下:
1. 定义了一些变量,包括源文件夹路径、保存文件夹路径等。
2. 使用glob库读取源文件夹中所有的.jpg文件,并将它们按文件名从小到大排序。
3. 创建保存文件夹及其子文件夹。
4. 对每张训练图像进行加噪声处理,使用高斯噪声模拟真实场景中的噪声。加噪声程度通过sig数组随机生成,将加噪声后的图像保存到noisy子文件夹中,原始图像保存到original子文件夹中。
5. 对每张测试图像进行同样的操作,将加噪声后的图像保存到test/noisy子文件夹中,原始图像保存到test/original子文件夹中。
6. 最后输出提示信息。
需要注意的是,这段代码使用了OpenCV库对图像进行处理,需要先安装OpenCV库。另外,这段代码中的变量命名比较规范,代码结构清晰,易于阅读和理解。
阅读全文